Строение жидкостей газа. Модель строения жидкости в молекулярно-кинетической теории. Кристаллическое строение твердых тел

Вся неживая материя состоит из частиц, поведение которых может отличаться. Строение газообразных, жидких и твердых тел имеет свои особенности. Частицы в твердых телах удерживаются вместе, так как расположены очень тесно друг к другу, это делает их очень прочными. Кроме того, они могут держать определенную форму, так как их мельчайшие частицы практически не двигаются, а только вибрируют. Молекулы в жидкостях находятся довольно близко друг к другу, однако они могут свободно передвигаться, поэтому собственной формы они не имеют. Частицы в газах движутся очень быстро, вокруг них, как правило, много пространства, что предполагает их легкое сжатие.

Свойства и строение твердых тел

Какова структура и особенности строения твердых тел? Они состоят из частиц, которые расположены очень близко друг к другу. Они не могут перемещаться, и поэтому их форма остается фиксированной. Каковы свойства твердого тела? Оно не сжимается, но если его нагреть, то его объем будет увеличиваться с ростом температуры. Это происходит потому, что частицы начинают вибрировать и двигаться, что приводит к уменьшению плотности.

Одной из особенностей твердых тел является то, что они имеют неизменную форму. Когда твердое тело нагревается, движения частиц увеличивается. Быстрее движущиеся частицы сталкиваются более яростно, заставляя каждую частицу толкать своих соседей. Следовательно, повышение температуры обычно приводит к повышению прочности тела.

Кристаллическое строение твердых тел

Межмолекулярные силы взаимодействия между соседними молекулами твердого тела достаточно сильны, чтобы держать их в фиксированном положении. Если эти мельчайшие частицы находятся в высокоупорядоченной комплектации, то такие структуры принято называть кристаллическими. Вопросами внутренней упорядоченности частиц (атомов, ионов, молекул) элемента или соединения занимается специальная наука - кристаллография.

Твердого тела также вызывает особый интерес. Изучая поведение частиц, того, как они устроены, химики могут объяснить и предсказать, как определенные виды материалов будут себя вести при определенных условиях. Мельчайшие частицы твердого тела расположены в виде решетки. Это так называемое регулярное расположение частиц, где немаловажное значение играют различные химические связи между ними.

Зонная теория строения твердого тела рассматривает как совокупность атомов, каждый их которых, в свою очередь, состоит из ядра и электронов. В кристаллическом строении ядра атомов находятся в узелках кристаллической решетки, для которой характерна определенная пространственная периодичность.

Что такое структура жидкости?

Строение твердых тел и жидкостей схоже тем, что частицы, из которых они состоят, находятся на близком расстоянии. Различие состоит в том, что молекулы свободно перемещаются, так как сила притяжения между ними гораздо слабее, нежели в твердом теле.

Какими же свойствами обладает жидкость? Во-первых, это текучесть, во-вторых, жидкость будет принимать форму контейнера, в который ее помещают. Если ее нагреть, объем будет увеличиваться. Из-за близкого расположения частиц друг к другу жидкость не может быть сжата.

Какова структура и строение газообразных тел?

Частицы газа располагаются случайным образом, они находятся так далеко друг от друга, что между ними не может возникнуть сила притяжения. Какими свойствами обладает газ и каково строение газообразных тел? Как правило, газ равномерно заполняет все пространство, в которое он был помещен. Он легко сжимается. Скорость частиц газообразного тела увеличивается вместе с ростом температуры. При этом происходит также повышение давления.

Строение газообразных, жидких и твердых тел характеризуется разными расстояниями между мельчайшими частицами этих веществ. Частицы газа находятся гораздо дальше друг от друга, чем в твердом или жидком состоянии. В воздухе, например, среднее расстояние между частицами примерно в десять раз превышает диаметр каждой частицы. Таким образом, объем молекул занимает всего около 0,1 % от общего объема. Остальные 99,9 % составляет пустое пространство. В противоположность этому частицы жидкости заполняют около 70 % общего объема жидкости.

Каждая частица газа движется свободно по прямолинейному пути, пока она не столкнется с другой частицей (газа, жидкости или твердого тела). Частицы обычно движутся достаточно быстро, а после того как две из них сталкиваются, они отскакивают друг от друга и продолжают свой путь в одиночку. Эти столкновения меняют направление и скорость. Эти свойства газовых частиц позволяют газам расширяться, чтобы заполнить любую форму или объем.

Изменение состояния

Строение газообразных, жидких и твердых тел может меняться, если на них оказывается определенное внешнее воздействие. Они могут даже переходить в состояния друг друга при определенных условиях, например в процессе нагревания или охлаждения.


  • Испарение. Строение и свойства жидких тел позволяют им при определенных условиях переходить в совершенно другое физическое состояние. Например, случайно пролив бензин при заправке автомобиля, можно довольно быстро почувствовать его резкий запах. Как это происходит? Частицы двигаются по всей жидкости, в итоге определенная их часть достигает поверхности. Их направленное движение может вынести эти молекулы за пределы поверхности в пространство над жидкостью, но притяжение будет затягивать их обратно. С другой стороны, если частица движется очень быстро, она может оторваться от других на приличное расстояние. Таким образом, при увеличении скорости частиц, которое случается обычно при нагревании, происходит процесс испарения, то есть преобразования жидкости в газ.

Поведение тел в разных физических состояниях

Строение газов, жидкостей, твердых тел главным образом обусловлено тем, что все эти вещества состоят из атомов, молекул или ионов, однако поведение этих частиц может быть совершенно разным. Частицы газа хаотичным образом удалены друг от друга, молекулы жидкости находятся близко друг к другу, но они не так жестко структурированы, как в твердом теле. Частицы газа вибрируют и передвигаются на высоких скоростях. Атомы и молекулы жидкости вибрируют, перемещаются и скользят мимо друг друга. Частицы твердого тела также могут вибрировать, но движение как таковое для них не свойственно.

Особенности внутренней структуры

Для того чтобы понять поведение материи, нужно сначала изучить особенности ее внутренней структуры. Каковы внутренние различия между гранитом, оливковым маслом и гелием в воздушном шарике? Простая модель структуры материи поможет найти ответ на этот вопрос.

Модель является упрощенным вариантом реального предмета или вещества. Например, до того как начинается непосредственное строительство, архитекторы сначала конструируют модель строительного проекта. Такая упрощенная модель не обязательно предполагает точное описание, но в то же время она может дать приблизительное представление того, что будет собой представлять та или иная структура.

Упрощенные модели

В науке, однако, моделями не всегда выступают физические тела. За последнее столетие наблюдался значительный рост человеческого понимания о физическом мире. Однако большая часть накопленных знаний и опыта основана на чрезвычайно сложных представлениях, например в виде математических, химических и физических формул.

Для того чтобы разобраться во всем этом, нужно быть достаточно хорошо подкованным в этих точных и сложнейших науках. Ученые разработали упрощенные модели для визуализации, объяснения и предсказания физических явлений. Все это значительным образом упрощает понимание того, почему некоторые тела имеют постоянную форму и объем при определенной температуре, а другие могут их менять и так далее.

Вся материя состоит из мельчайших частиц. Эти частицы находятся в постоянном движении. Объем движения связан с температурой. Повышенная температура свидетельствует об увеличении скорости движения. Строение газообразных, жидких и твердых тел отличается свободой передвижения их частиц, а также тем, насколько сильно частицы притягиваются друг к другу. Физические зависят от его физического состояния. Водяной пар, жидкая вода и лед имеют одинаковые химические свойства, но их физические свойства значительно отличаются.

Механика жидкости и газа (МЖГ) - это наука, изучающая закономерности покоя и движения жидкостей и газов.

Передачу энергии в гидравлических системах обеспечивают рабочие жидкости, поэтому чтобы эффективно их применять, надо знать какими свойствами они обладают. Жидкости, как и все вещества, имеют молекулярное строение. Они занимают промежуточное положение между газами и твердыми телами. Это определяется величинами межмолекулярных сил и характером движений составляющих их молекул.

В газах расстояния между молекулами больше, а силы межмолекулярного взаимодействия меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.

Молекулы жидкости находятся в непрерывном хаотическом тепловом движении, отличающемся от хаотического теплового движения газов и твердых тел. В жидкостях это движение осуществляется в виде колебаний (1013 колебаний в секунду) относительно мгновенных центров и скачкообразных переходов от одного центра к другому. Тепловое движение молекул твердых тел состоит в колебаниях относительно стабильных центров. Тепловое движение молекул газа выглядит, как непрерывные скачкообразные перемены мест. При этом надо заметить, что изменение температуры и давления приводят к изменениям свойств жидкостей. Установлено, что при повышении температуры и уменьшении давления свойства жидкостей приближаются к свойствам газов, а при понижении температуры и увеличении давления – к свойствам твердых тел.

Гипотеза сплошности. Рассматривать и математически описывать жидкость как совокупность огромного количества отдельных частиц, находящихся в постоянном непрогнозируемом движении, на современном уровне науки не представляется возможным. По этой причине жидкость рассматривается как некая сплошная деформируемая среда, имеющая возможность непрерывно заполнять пространство, в котором она заключена. Другими словами, под жидкостями понимают все тела, для которых характерно свойство текучести, основанное на явлении диффузии. Текучестью можно назвать способность тела как угодно сильно менять свой объём под действием сколь угодно малых сил. Таким образом, в гидравлике жидкость понимают как абстрактную среду – континуум, который является основой гипотезы сплошности. Континуум считается непрерывной средой без пустот и промежутков, свойства которой одинаковы во всех направлениях. Это означает, что все характеристики жидкости являются непрерывными функциями и все частные производные по всем переменным также непрерывны. По-другому такие тела (среды) называют капельными жидкостями. Капельные жидкости - это такие, которые в малых количествах стремятся принять шарообразную форму, а в больших образуют свободную поверхность. Очень часто в математических описаниях гидравлических закономерностей используются понятия «частица жидкости» или «элементарный объём жидкости». К ним можно относиться как к бесконечно малому объёму, в котором находится достаточно много молекул жидкости. Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости. Правомерность применения такой модели жидкости подтверждена всей практикой гидравлики. Изучение реальных жидкостей и газов связано со значительными трудностями, т.к. физические свойства реальных жидкостей зависят от их состава, от различных компонентов, которые могут образовывать с жидкостью различные смеси как гомогенные (растворы) так и гетерогенные (эмульсии, суспензии и др.) По этой причине для вывода основных уравнений движения жидкости приходится пользоваться некоторыми абстрактными моделями жидкостей и газов, которые наделяются свойствами неприсущими природным жидкостям и газам.



2.Свойства жидкостей и газов .

- Плотность r - это масса единицы объёма жидкости (кг/м3 ) ,где m - масса, кг ; V - объём, м3 .

Удельный вес - это вес единицы объёма жидкости (Н/м3 ) ,где G - вес (сила тяжести), Н ; V - объём, м3 .Связаны удельный вес и плотность через ускорение свободного паде­ния (g = 9,81 » 10 м/с2 ) так: .

Вязкость - это свойство жидкости проявлять внутреннее трение при её движении, обусловленное сопротивлением взаимному сдвигу её частиц. В по­коящейся жидкости вязкость не проявляется. Количественно вязкость мо­жет быть выражена в виде динамической или кинематической вязкости, ко­торые легко переводятся одна в другую. Вязкость динамическая , Па· с = Н· с / м2 . Вязкость кинематическая , м2 / с .

Сжимаемость жидкости это свойство жидкостей изменять свой объём при изменении давления. Сжимаемость характеризуется коэффициентом объёмного сжатия (сжимаемости) ІP, представляющим собой относительное изменение объёма жидкости V при изменении давления P на единицу.

Текучесть.Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

Температурное расширение жидкости состоит в том, что она может изменять свой объем при изменении температуры. Это свойство характеризуется температурным коэффициентом объемного расширения, представляющим относительное изменение объема жидкости при изменении температуры на единицу (на 1оC) и при постоянном давлении:

Растворение газов - способность жидкости поглощать (растворять) газы, находящиеся в соприкосновении с ней. Все жидкости в той или иной степени поглощают и растворяют газы. Это свойство характеризуется коэффициентом растворимости kр. Если в закрытом сосуде жидкость находится в контакте с газом при давлении P1, то газ начнёт растворяться в жидкости. Через какое-то время

произойдёт насыщение жидкости газом и давление в сосуде изменится. Коэффициент растворимости связывает изменение давления в сосуде с объёмом растворённого газа и объёмом жидкости следующим соотношением

где VГ– объём растворённого газа при нормальных условиях, Vж– объём жидкости, P1 и P2– начальное и конечное давление газа. Коэффициент растворимости зависит от типа жидкости, газа и температуры.

Сопротивление растяжению жидкостей заключается в способности жидкости противостоять растягивающим силам. Сопротивление растяжению жидкостей может возникать только в дегазированных жидкостях.

Поверхностное натяжение. Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Испарение - постепенный переход вещества из жидкости в газообразную фазу (пар).При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Давление насыщенного пара связано определённой для данного вещества зависимостью от температуры. Когда внешнее давление падает ниже давления насыщенного пара, происходит кипение (жидкости) или возгонка (твёрдого тела); когда оно выше - напротив, конденсация или десублимация. Насы́щенный пар - это пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава.

Строение газов, жидкостей и твердых тел.

Основные положения молекулярно-кинетической теории :

    все вещества состоят из молекул, а молекулы из атомов,

    атомы и молекулы находятся в постоянном движении,

    между молекулами существуют силы притяжения и отталкивания.

В газах молекулы двигаются хаотически, расстояния между молекулами большие, молекулярные силы малы, газ занимает весь предоставленный ему объем.

В жидкостях молекулы располагаются упорядочно только на малых расстояниях, а на больших расстояниях порядок (симметрия) расположения нарушается – “ближний порядок”. Силы молекулярного притяжения удерживают молекулы на близком расстоянии. Движение молекул – “перескоки ” из одного устойчивого положения в другое (как правило, в пределах одного слоя. Таким движением объясняется текучесть жидкости. Жидкость не имеет форму, но имеет объем.

Твердые тела – вещества, которые сохраняют форму, делятся на кристаллические и аморфные. Кристаллические твердые тела имеют кристаллическую решетку, в узлах которой могут находиться ионы, молекулы или атомы Они совершают колебания относительно устойчивых положений равновесия.. Кристаллические решетки имеют правильную структуру по всему объему – “дальний порядок” расположения.

Аморфные тела сохраняют форму, но не имеют кристаллической решетки и, как следствие, не имеют ярко выраженной температуры плавления. Их называют застывшими жидкостями, так как они, как жидкости имеют “ближний ” порядок расположения молекул.

Силы взаимодействия молекул

Все молекулы вещества взаимодействуют между собой силами притяжения и отталкивания. Доказательство взаимодействия молекул: явление смачивания, сопротивление сжатию и растяжению, малая сжимаемость твердых тел и газов и др. Причина взаимодействия молекул - это электромагнитные взаимодействия заряженных частиц в веществе. Как это объяснить? Атом состоит из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Заряд ядра равен суммарному заряду всех электронов, поэтому в целом атом электрически нейтрален. Молекула, состоящая из одного или нескольких атомов, тоже электрически нейтральна. Рассмотрим взаимодействие между молекулами на примере двух неподвижных молекул. Между телами в природе могут существовать гравитационные и электромагнитные силы. Так как массы молекул крайне малы, ничтожно малые силы гравитационного взаимодействия между молекулами можно не рассматривать. На очень больших расстояниях электромагнитного взаимодействия между молекулами тоже нет. Но, при уменьшении расстояния между молекулами молекулы начинают ориентироваться так, что их обращенные друг к другу стороны будут иметь разные по знаку заряды (в целом молекулы остаются нейтральными), и между молекулами возникают силы притяжения. При еще большем уменьшении расстояния между молекулами возникают силы отталкивания, как результат взаимодействия отрицательно заряженных электронных оболочек атомов молекул. В итоге на молекулу действует сумма сил притяжения и отталкивания. На больших расстояниях преобладает сила притяжения (на расстоянии 2-3 диаметров молекулы притяжение максимально), на малых расстояниях сила отталкивания. Существует такое расстояние между молекулами, на котором силы притяжения становятся равными силам отталкивания. Такое положение молекул называется положением устойчивого равновесия. Находящиеся на расстоянии друг от друга и связанные электромагнитными силами молекулы обладают потенциальной энергией. В положении устойчивого равновесия потенциальная энергия молекул минимальна. В веществе каждая молекула взаимодействует одновременно со многими соседними молекулами, что также влияет на величину минимальной потенциальной энергии молекул. Кроме того, все молекулы вещества находятся в непрерывном движении, т.е. обладают кинетической энергией. Таким образом, структура вещества и его свойства (твердых, жидких и газообразных тел) определяются соотношением между минимальной потенциальной энергией взаимодействия молекул и запасом кинетической энергии теплового движения молекул.

Строение и свойства твердых, жидких и газообразных тел

Строение тел объясняется взаимодействием частиц тела и характером их теплового движения.

Твердое тело

Твердые тела имеют постоянную форму и объем, практически несжимаемы. Минимальная потенциальная энергия взаимодействия молекул больше кинетической энергии молекул. Сильное взаимодействие частиц. Тепловое движение молекул в твердом теле выражается только лишь колебаниями частиц (атомов, молекул) около положения устойчивого равновесия.

Из-за больших сил притяжения молекулы практически не могут менять свое положение в веществе, этим и объясняется неизменность объема и формы твердых тел. Большинство твердых тел имеет упорядоченное в пространстве расположение частиц, которые образуют правильную кристаллическую решетку. Частицы вещества (атомы, молекулы, ионы) расположены в вершинах - узлах кристаллической решетки. Узлы кристаллической решетки совпадают с положением устойчивого равновесия частиц. Такие твердые тела называются кристаллическими.

Жидкость

Жидкости имеют определенный объем, но не имеют своей формы, они принимают форму сосуда, в которой находятся. Минимальная потенциальная энергия взаимодействия молекул сравнима с кинетической энергией молекул. Слабое взаимодействие частиц. Тепловое движение молекул в жидкости выражено колебаниями около положения устойчивого равновесия внутри объема, предоставленного молекуле ее соседями. Молекулы не могут свободно перемещаться по всему объему вещества, но возможны переходы молекул на соседние места. Этим объясняется текучесть жидкости, способность менять свою форму.

В жидкостях молекулы достаточно прочно связаны друг с другом силами притяжения, что объясняет неизменность объема жидкости. В жидкости расстояние между молекулами равно приблизительно диаметру молекулы. При уменьшении расстояния между молекулами (сжимании жидкости) резко увеличиваются силы отталкивания, поэтому жидкости несжимаемы. По своему строению и характеру теплового движения жидкости занимают промежуточное положение между твердыми телами и газами. Хотя разница между жидкостью и газом значительно больше, чем между жидкостью и твердым телом. Например, при плавлении или кристаллизации объем тела изменяется во много раз меньше, чем при испарении или конденсации.

Газы не имеют постоянного объема и занимают весь объем сосуда, в котором они находятся. Минимальная потенциальная энергия взаимодействия молекул меньше кинетической энергии молекул. Частицы вещества практически не взаимодействуют. Газы характеризуются полной беспорядочностью расположения и движения молекул.

Расстояние между молекулами газа во много раз больше размеров молекул. Малые силы притяжения не могут удержать молекулы друг около друга, поэтому газы могут неограниченно расширяться. Газы легко сжимаются под действием внешнего давления, т.к. расстояния между молекулами велики, а силы взаимодействия пренебрежимо малы. Давление газа на стенки сосуда создается ударами движущихся молекул газа.

Притяжение и отталкивание частиц определяют их взаимное расположение в веществе. А от расположения частиц существенно зависят свойства веществ. Так, глядя на прозрачный очень твердый алмаз (бриллиант) (рис. 111, а) и на мягкий черный графит (рис. 111, б) (из него изготавливают стержни карандашей), мы не догадываемся, что оба вещества состоят из совершенно одинаковых атомов углерода. Просто в графите эти атомы расположены иначе, чем в алмазе.

Рис. 111

Заметим, что на рисунках изображены не сами атомы, а их модели - шарики и в действительности никаких соединительных стержней или проволочек между ними нет. Это - условное изображение расположения атомов в веществе.

Взаимодействие частиц вещества приводит к тому, что оно может находиться в трех состояниях: твердом, жидком и газообразном. Например, лед, вода, пар (рис. 112). В трех состояниях может находиться любое вещество, но для этого нужны определенные условия: давление, температура. Например, кислород в воздухе - газ, но при охлаждении ниже -193°С он превращается в жидкость, а при температуре -219°С кислород - твердое вещество. Железо при нормальном давлении и комнатной температуре находится в твердом состоянии. При температуре выше 1539°С железо становится жидким, а при температуре выше 3050°С - газообразным. Жидкая ртуть, используемая в медицинских термометрах, при охлаждении до температуры ниже -39°С становится твердой. При температуре выше 357°С ртуть превращается в пар (газ).

Рис. 112

Превращая металлическое серебро в газ, его напыляют на стекло и получают «зеркальные» очки.

Какими свойствами обладают вещества в различных состояниях?

Начнем с газов, в которых поведение молекул (рис. 113) напоминает движение пчел в рое. Однако пчелы в рое самостоятельно изменяют направление движения и практически не сталкиваются друг с другом. В то же время для молекул в газе такие столкновения не только неизбежны, но происходят практически непрерывно. В результате столкновений направления и значения скорости движения молекул изменяются.

Рис. 113

Результатом такого движения и отсутствия взаимодействия частиц при движении является то, что газ не сохраняет ни объема, ни формы , а занимает весь предоставленный ему объем. Каждый из вас посчитает сущей нелепицей утверждения: «Воздух занимает половину объема комнаты» и «Я накачал воздух в две трети объема резинового шарика». Воздух, как и любой газ, занимает весь объем комнаты и весь объем шарика.

А какие свойства имеют жидкости? Проведем опыт.

Рис. 114

Перельем воду из мензурки 1 в мензурку 2. Форма жидкости изменилась , но объем воды остался тем же (рис. 114). Молекулы не разлетелись по всему объему, как это было бы в случае с газом. Значит, взаимное притяжение молекул жидкости существует, но оно не удерживает жестко соседние молекулы. Они колеблются и перескакивают из одного места в другое (рис. 115), чем и объясняется текучесть жидкостей.

Рис.115

Наиболее сильным является взаимодействие частиц в твердом теле. Оно не дает возможности частицам разойтись. Частицы лишь совершают хаотические колебательные движения около определенных положений (рис. 116). Поэтому твердые тела сохраняют и объем, и форму . Резиновый мяч будет сохранять форму шара и объем, куда бы его не поместили: в банку, на стол и т. д.

Рис. 116

Подумайте и ответьте

  1. Какими основными свойствами обладает газ?
  2. Почему жидкость не сохраняет форму?
  3. Чем отличается твердое состояние вещества от жидкого и газообразного?
  4. Отличаются ли молекулы воды от молекул льда?
  5. Какие из перечисленных веществ в обычных условиях (при комнатной температуре и нормальном давлении) находятся в газообразном состоянии, а какие - в жидком или твердом: олово, бензин, кислород, железо, ртуть, воздух, стекло, пластмасса?
  6. Может ли ртуть находиться в твердом состоянии, а воздух - в жидком? При каких условиях?

Домашнее задание

  1. В пластмассовую бутылку (0,5 л) налейте доверху воду и закройте герметично крышкой. Попробуйте сжать в бутылке воду. Затем вылейте воду и снова закройте бутылку. Теперь сожмите в ней воздух. На основании результатов опыта выскажите гипотезу о строении газов и жидкостей.
  2. Задание-конкурс: составьте таблицу, в которой сравните характер движения, взаимодействия частиц, а также свойства вещества в газообразном, твердом и жидком состояниях. Победителем конкурса будет тот, чья таблица содержит наиболее полную и правильную информацию.

Повторим главное в изученном

  • Все вещества состоят из отдельных частиц (атомов, молекул), между которыми имеются расстояния.
  • Частицы веществ непрерывно и хаотически движутся.
  • Скорость движения частиц тем больше, чем выше температура тела.
  • Диффузией называется явление взаимного проникновения веществ друг в друга. Особенно быстро диффузия протекает в газах, медленнее - в жидкостях, очень медленно - в твердых телах. При увеличении температуры диффузия идет быстрее.
  • На расстояниях, больших, чем размеры самих частиц, преобладает притяжение частиц. На расстояниях, меньших размеров самих частиц, - отталкивание. Притяжение частиц очень быстро ослабевает при их удалении друг от друга.
  • Изменение размеров тела при его нагревании называется тепловым расширением.
  • Тепловое расширение разных твердых и жидких веществ различно, а всех газов - одинаково.

Содержание статьи

ЖИДКОСТЕЙ ТЕОРИЯ. Каждый из нас без труда припомнит немало веществ, которые он считает жидкостями. Однако дать точное определение этого состояния вещества не так-то просто, поскольку жидкости обладают такими физическими свойствами, что в одних отношениях они напоминают твердые тела, а в других – газы. Наиболее ярко сходство между жидкостями и твердыми телами проявляется у стеклообразных материалов. Их переход от твердого состояния к жидкому при повышении температуры происходит постепенно, они просто становятся все более мягкими, так что нельзя указать, в каком температурном интервале их следует назвать твердыми телами, а в каком – жидкостями. Можно лишь сказать, что вязкость стеклообразного вещества в жидком состоянии меньше, чем в твердом. Твердое стекло поэтому часто называют переохлажденной жидкостью.

По-видимому, наиболее характерным свойством жидкостей, отличающим их от твердых тел, является низкая вязкость (высокая текучесть). Благодаря ей они принимают форму сосуда, в который налиты. На молекулярном уровне высокая текучесть означает относительно большую свободу частиц жидкости. В этом жидкости напоминают газы, хотя силы межмолекулярного взаимодействия жидкостей больше, молекулы расположены теснее и более ограничены в своем движении.

К сказанному можно подойти и иначе – с точки зрения представления о дальнем и ближнем порядке. Дальний порядок существует в кристаллических твердых телах, атомы которых расположены строго упорядоченно, образуя трехмерные структуры, которые можно получить многократным повторением элементарной ячейки. Пример двумерного дальнего порядка представлен на рис. 1,а . В жидкости и стекле дальний порядок отсутствует. Это, однако, не означает, что они вообще не упорядочены. Для жидкости характерна картина, подобная изображенной на рис. 1,б . Число ближайших соседей у всех атомов практически одинаково, но расположение атомов по мере их удаления от какой-либо выделенной позиции становится все более и более хаотичным. Таким образом, упорядоченность существует лишь на малых расстояниях, отсюда и название: ближний порядок. Адекватное математическое описание структуры жидкости может быть дано лишь с помощью статистической физики. Например, если жидкость состоит из одинаковых сферических молекул, то ее структуру можно описать радиальной функцией распределения g (r ), которая дает вероятность обнаружения какой-либо молекулы на расстоянии r от данной, выбранной в качестве точки отсчета. Экспериментально эту функцию можно найти, исследуя дифракцию рентгеновских лучей или нейтронов, а с появлением быстродействующих компьютеров ее стали вычислять методом компьютерного моделирования, основываясь на имеющихся данных о природе сил, действующих между молекулами, или на предположениях об этих силах, а также на законах механики Ньютона. Сравнивая радиальные функции распределения, полученные теоретически и экспериментально, можно проверить правильность предположений о природе межмолекулярных сил.

В органических веществах, молекулы которых имеют удлиненную форму, в том или ином интервале температур иногда обнаруживаются области жидкой фазы с дальним ориентационным порядком, который проявляется в тенденции к параллельному выстраиванию длинных осей молекул. При этом ориентационная упорядоченность может сопровождаться координационной упорядоченностью центров молекул. Жидкие фазы такого типа обычно называют жидкими кристаллами; для понимания их структурных свойств тоже весьма полезно компьютерное моделирование.

В газах никакой упорядоченности в расположении молекул нет. Таким образом, жидкости занимают промежуточное положение между кристаллическими твердыми телами и газами, т.е. между полностью упорядоченными и полностью неупорядоченными молекулярными системами. Именно поэтому теория жидкостей оказывается столь сложной. Ниже мы рассмотрим связь между твердыми телами, жидкостями и газами, а также между различными свойствами жидкостей, пользуясь простыми молекулярными моделями.

Жидкость, газ и межмолекулярные силы.

В 1 см 3 газа при температуре 0° С и нормальном давлении содержится примерно 2,7Ч10 19 молекул, так что среднее расстояние между ними составляет около 30Ч10 –8 см, или 30 Å. Поскольку диаметр самих молекул всего лишь несколько ангстрем, логично предположить, что взаимодействие между молекулами газа пренебрежимо мало всегда, кроме моментов их столкновений. Таким образом, мы приходим к модели газа, в которой молекулы представляются движущимися независимо друг от друга шариками, сталкивающимися друг с другом и со стенками сосуда, в который газ заключен. При температуре 0° С скорость молекул составляет несколько сотен метров в секунду, и их столкновения со стенками сосуда создают ощутимое давление. Более детальное рассмотрение указанной модели дает соотношение между давлением P , объемом V и термодинамической температурой T (T = °С + 273)

(1)PV /T = const (для данного количества газа).

Это соотношение – так называемое уравнение состояния идеального газа – представляет собой обобщенную запись законов Бойля – Мариотта, Гей-Люссака и Шарля, и поведение большинства газов описывается им с хорошей точностью. Уравнение (1) выполнялось бы всегда, если бы газ оставался газом независимо от понижения температуры или повышения давления. Однако хорошо известно, что все газы можно перевести в жидкое состояние, если достаточно сильно сжать их или охладить. Для каждого газа есть так называемая критическая температура T c , ниже которой он всегда может быть ожижен путем повышения давления; выше T c газ не может быть ожижен ни при каких условиях. Это означает, что модель независимо движущихся молекул в условиях, когда температура выше T c , является лишь приближенной, а ниже T c при высоких давлениях и плотностях она вообще неверна. Существование жидкого состояния ниже T c наводит на мысль, что между молекулами действуют силы притяжения, поскольку иначе вообще нельзя понять, почему они остаются вблизи друг от друга. Однако помимо притяжения молекулы испытывают и взаимное отталкивание – мы убеждаемся в этом, когда пытаемся уменьшить объем жидкости (или твердого тела). Силы притяжения действуют на больших расстояниях, чем силы отталкивания, но и те и другие имеют электростатическую природу.

Если ввести в модель идеального газа поправки на сцепление молекул и их объем, то получается уравнение, вообще говоря, отличное от (1). Одно из таких уравнений, выведенное Я.Ван-дер-Ваальсом, имеет вид

(2)(P + a /V 2) (V - b )/T = const.

Здесь a и b – константы, характерные для данного газа. Это уравнение также предсказывает существование критической температуры T c и качественно описывает наблюдаемый переход между газообразной и жидкой фазами.

Рассмотрим некоторые практические следствия из уравнения (2). На рис. 2 представлен график зависимости давления газа от объема. Пусть некоторое количество газа занимает объем V 1 при температуре T 1 и давлении P 1 . При уменьшении объема давление возрастает и состояние газа изменяется: из точки A он переходит в точку B . Здесь газ начинает конденсироваться, причем дальнейшее уменьшение объема уже не приводит к изменению давления. При движении вдоль прямой BC количество жидкости возрастает до тех пор, пока в точке C газ не будет ожижен полностью. Постоянное давление, соответствующее этому процессу, называется давлением насыщенного пара при данной температуре T 1 . Во всех точках отрезка BC между жидкостью и газом существует равновесие (термодинамическое). Это означает, что число молекул, испаряющихся с поверхности жидкости в 1 с, в точности равно числу молекул, конденсирующихся из пара в жидкость. Для дальнейшего уменьшения объема необходимо создать очень высокое давление, чтобы преодолеть силы взаимного отталкивания молекул жидкости. Этой ситуации отвечает вертикальная прямая CD . Кривая ABCD называется изотермой, поскольку всем ее точкам соответствует одна и та же температура. Если такой же опыт проводить при более высокой температуре, то в соответствии с уравнением Ван-дер-Ваальса мы получим изотерму с таким же ходом, лишь отрезок BC станет короче. И наконец, при критической температуре T c этот отрезок вообще стянется в точку с координатами T c и P c . В этой точке жидкость и газ неразличимы. При температурах, превышающих T c , уравнение Ван-дер-Ваальса (2) переходит в уравнение (1) (кривая, соответствующая температуре T 2 на рис. 2). Значения критических температур и соответствующих им давлений приведены в следующей таблице:

Поверхностное натяжение.

Как мы видели, учет межмолекулярных сил позволяет правильно объяснить процесс конденсации газа. Попытаемся теперь с учетом этих сил описать некоторые физические свойства жидкостей.

Представим себе каплю ртути. Мы можем слегка расплющить ее пальцем, но стоит убрать палец, и капля снова соберется в шарик. Она ведет себя так, как будто ее обтягивает эластичная пленка. Это и есть проявление эффекта поверхностного натяжения. Его природа станет ясна, если мы обратимся к рис. 3. Здесь A и B – две молекулы жидкости, первая в объеме, вторая на поверхности. В обоих случаях на них действуют силы притяжения со стороны других молекул, но лишь тех, которые находятся внутри сферы диаметром в несколько ангстрем, поскольку эти силы быстро убывают с расстоянием. Для молекулы A такая сфера лежит полностью внутри жидкости, поэтому равнодействующая всех сил равна нулю. Молекула B , находящаяся на поверхности, будет втягиваться внутрь жидкости, поскольку на нее действуют только силы притяжения со сторонымолекул, находящихся в нижней полусфере. Такие же силы, перпендикулярные поверхности и направленные внутрь жидкости, действуют на все молекулы вблизи поверхности; они и создают поверхностное натяжение.


Поверхностное натяжение S количественно определяется как сила, действующая на единицу длины линии на поверхности жидкости. Рассмотрим мыльную пленку, натянутую на вертикальную рамку из двух тонких проволочек TUV и PQ (рис. 4). Проволочка PQ не закреплена и может свободно передвигаться. Она будет смещаться вниз под действием силы тяжести, пока последняя не уравновесится силой, обусловленной поверхностным натяжением. Поскольку пленка имеет две поверхности, на проволочку будет действовать сила 2SL , где L – длина участка проволочки PQ , контактирующего с пленкой.

Из-за наличия поверхностного натяжения любое увеличение площади поверхности жидкости сопряжено с затратами энергии. Именно поэтому небольшие капли жидкости принимают сферическую форму: отношение площади их поверхности к объему становится минимальным, а вслед за этим минимизируется и потенциальная энергия. Большие капли деформируются под действием силы тяжести.

Капиллярные явления.

Капля воды на чистой стеклянной пластинке теряет свою сферическую форму и растекается, образуя тонкую пленку. Происходит это потому, что силы сцепления между молекулами воды и стекла превышают аналогичные силы между молекулами воды – вода смачивает стекло. Капля ртути на той же пластинке остается сферической: силы сцепления между молекулами ртути больше сил сцепления между молекулами ртути и стекла – ртуть стекло не смачивает. Именно этим объясняются так называемые капиллярные явления, наблюдаемые в тонкой стеклянной трубке-капилляре (рис. 5). Если опустить капилляр в сосуд с водой, то вода поднимется по нему выше уровня в сосуде, причем ее поверхность (мениск) будет иметь вогнутую форму. Уровень ртути в таком же капилляре, напротив, будет ниже уровня в самом сосуде, а мениск будет выпуклым. Поскольку сцепление между молекулами воды и стекла сильнее, чем между самими молекулами воды, вода как бы «взбирается» по стенкам капилляра, пока давление ее столбика в капилляре не уравновесится давлением, обусловленным межмолекулярными силами. Вогнутый мениск образуется потому, что на молекулы воды вблизи стенок капилляра действует отличная от нуля сила, направленная к стенке. Для ртути наблюдается обратная картина.


Кипение жидкостей.

При кипении жидкости в открытом сосуде давление внутри пузырьков пара, образующихся в жидкости, должно быть по меньшей мере равно атмосферному давлению – иначе пузырьки просто будут схлопываться. Следовательно, в точке кипения давление паров жидкости равно атмосферному. На достаточно большой высоте температура кипения жидкости ниже, чем на уровне моря, поскольку барометрическое давление понижается с высотой. Так, температура кипения воды на высоте 4000 м составляет лишь около 85° С, тогда как на уровне моря она равна 100° С.

Кипение – это интенсивное испарение жидкости, происходящее не только с поверхности, но и во всем ее объеме, внутрь образующихся пузырьков пара. Чтобы перейти из жидкости в пар, молекулы должны приобрести энергию, необходимую для преодоления сил притяжения, удерживающих их в жидкости. Например, для испарения 1 г воды при температуре 100° С и давлении, соответствующем атмосферному давлению на уровне моря, требуется затратить 2258 Дж, из которых 1880 идут на отделение молекул от жидкости, а остальные – на работу по увеличению объема, занимаемого системой, против сил атмосферного давления (1 г водяных паров при 100° С и нормальном давлении занимает объем 1,673 см 3 , тогда как 1 г воды при тех же условиях – лишь 1,04 см 3).

Температура кипения раствора нелетучего вещества, как правило, выше, чем чистого растворителя. Поскольку жидкость закипает, когда давление ее паров становится равным атмосферному, указанная закономерность означает, что давление паров раствора нелетучего вещества при данной температуре ниже, чем у чистого растворителя.

Затвердевание жидкостей.

Обычно при затвердевании жидкостей их объем несколько уменьшается (примерно на 10%), хотя существуют и исключения из этого правила. Например, вода, галлий и висмут при затвердевании расширяются, так что затвердевшее вещество плавает на поверхности жидкости. Поведение жидкостей вблизи температуры затвердевания может обнаруживать и другие аномалии, например при повышении температуры в интервале от 0 до 4° С вода сжимается. Чтобы объяснить эти экспериментальные факты, рассмотрим сначала переход от жидкого состояния к твердому для «нормальных» веществ, например алюминия. Как показывает рентгеноструктурный анализ, алюминий кристаллизуется с образованием гранецентрированной кубической решетки (рис. 6), в которой каждый атом окружен двенадцатью ближайшими соседями, находящимися от него на расстоянии 2,86 Å (2,86Ч10 –8 см). Если атомы считать сферами, то такое расположение соответствует наиболее плотной их упаковке («плотноупакованная» структура). В алюминии, находящемся в жидком состоянии, дальний порядок отсутствует, однако какой-то ближний порядок все же остается. По данным рентгеновской дифракции каждый атом в нем окружен 10–11 ближайшими соседями, расположенными на расстоянии 2,96 Å от него, т.е. структура жидкого алюминия вблизи температуры затвердевания сходна со структурой твердого алюминия, но несколько более «рыхлая». Для воды, галлия и висмута наблюдается обратная картина: вблизи температуры затвердевания более «рыхлой» является их структура не в жидком, а в твердом состоянии. Ответ на вопрос о причинах такой аномалии следует искать в особенностях строения их молекул и связей между ними в разных агрегатных состояниях. Рассмотрим, например, воду и лед. Оба они построены из одних и тех же молекул, которые состоят из дважды ионизованных отрицательных ионов кислорода (О 2–) и двух однократно ионизованных положительных ионов водорода (H +). В молекуле воды эти три иона образуют треугольник с двумя протонами в основании и кислородом в вершине (соответственно два малых кружка и один большой на рис. 7); угол между связями O–H равен 104°. В структуре льда молекулы H 2 O расположены так, что каждый атом кислорода находится в окружении четырех водородных атомов, располагающихся в вершинах тетраэдра. Это обеспечивает максимальный выигрыш в энергии благодаря притяжению между положительными и отрицательными ионами, но структура становится значительно более «рыхлой». При плавлении льда такая довольно неэкономичная упаковка молекул H 2 O постепенно сменяется более плотной, и в интервале от 0 до 4° С объем вещества постепенно уменьшается. Рыхлая структура твердых галлия и висмута тоже обусловливается особенностями взаимодействий между атомами, однако характер этих связей гораздо сложнее, чем у льда.

Растворение жидкостей.

Хорошо известно, что вода растворяет спирт в любом количестве, тогда как с ртутью и нефтью она вообще не смешивается. Точно так же бензол растворяет углеводороды, но не растворяет воду. В чем причина этого феномена? Здесь можно дать такой общий ответ: жидкости смешиваются, если сходны их электронные структуры, а различия в электронной структуре затрудняют смешение. Чтобы пояснить, что мы понимаем под «электронной структурой», вновь рассмотрим воду. При образовании молекулы воды происходит перераспределение заряда между составляющими ее атомами: атомы водорода отдают свои валентные электроны, а атом кислорода принимает их. Таким образом, молекула воды имеет ненулевой электрический дипольный момент, т.е. является полярной. Этим объясняется, в частности, то, что вода обладает очень большой диэлектрической проницаемостью и соли хорошо растворяются в ней, диссоциируя на ионы. Диполь-дипольное взаимодействие удерживает молекулы воды вместе, вследствие чего повышается ее температура кипения. Другой пример полярной жидкости – спирт C 2 H 5 OH; он легко смешивается с водой, поскольку дипольный момент его молекул сходен с дипольным моментом молекул воды.

Наряду с полярными жидкостями, молекулы которых в значительной степени связаны между собой, существуют и неполярные с более слабыми межмолекулярными связями. Примером таких жидкостей могут служить углеводороды – бензол, нафталин и др. Молекулы этих жидкостей построены из атомов углерода и водорода, которые обобществляют свои валентные электроны вместо того, чтобы отдавать или присоединять их. Об относительной слабости связей между молекулами углеводородов свидетельствует низкая температура их кипения. Между жидкостями с четко выраженными полярными свойствами (вода) и абсолютно неполярными (углеводороды) находится целый спектр классов жидкостей, так что не всегда можно заранее сказать, будут две данные жидкости смешиваться или нет. Но в большинстве случаев выполняется правило, сформулированное в начале раздела.

Кроме электронной структуры, смешиваемость жидкостей может существенным образом зависеть от размера молекул, а также от температуры. Например, никотин смешивается с водой в любой пропорции ниже 60° С и выше 208° С; при промежуточных же температурах взаимная растворимость никотина и воды весьма ограничена.

Осмос.

В 1748 Ж.Нолле обнаружил, что некоторые растительные клетки в концентрированном солевом растворе сжимаются – вода уходит из них через клеточную мембрану. Если те же клетки перенести затем в воду, то они разбухают и восстанавливают свой размер. Такое перемещение вещества (диффузия) через полупроницаемую перегородку, разделяющую раствор и чистый растворитель или два раствора разной концентрации, называется осмосом. Это явление можно объяснить тем, что молекулы растворителя, как правило, меньше молекул растворенного вещества, а потому легче проходят сквозь поры в перегородке. Поскольку в разбавленном растворе (или чистом растворителе) число молекул растворителя больше, чем в концентрированном, происходит диффузионный перенос этих молекул в сторону последнего.

Жидкости и твердые тела.

Ранее мы говорили о взаимоотношениях жидкостей и их паров вблизи критической температуры T c . Аналогичные взаимоотношения существуют между жидкостями и твердыми телами – по крайней мере вблизи температуры плавления T m .

Обычно при расплавлении твердого тела его объем увеличивается примерно на 10%, т.е. среднее расстояние между соседними молекулами в твердом и жидком состояниях почти одинаково. Сцепление между атомами или молекулами в твердом и жидком состояниях различается не очень сильно, и пластичность твердых тел можно считать аналогом текучести жидкостей. Таким образом, по своим физическим свойствам твердые тела и жидкости различаются не столь радикально, как это кажется. Соответственно существуют два типа теорий жидкого состояния: одни опираются на представления современной теории твердого тела, а другие – на представления, заимствованные из теории газов. Теории первого типа более адекватны вблизи точки плавления T m , а второго – вблизи критической точки T c .

Жидкие металлы.

Многие физические свойства твердых металлов мало меняются при плавлении. В связи с этим разрабатываются более общие теории, в которых свойства жидких и твердых металлов рассматриваются с единых позиций. В этих теориях важную роль играет структурный фактор, определяемый взаимным расположением атомов. Оказывается, что вследствие довольно сильных колебаний атомов твердого тела при повышенных температурах структурный фактор твердого тела вблизи точки плавления не очень сильно отличается от такового для жидкости. Металлы с низкой температурой плавления, например натрий, применяются в качестве охлаждающих теплоносителей в ядерных реакторах АЭС.

Инвентарь