Проект «Теория красных дыр» в «Музее Моды. Чёрная дыра Теория красных дыр

С 21 сентября по 15 октября в Музейно-выставочном центре «Музей Моды» пройдет выставка в рамках параллельной программы 7-й Московской международной биеннале современного искусства 2017 . Художественно-философский проект «Теория красных дыр» объединил шестерых художников, которые рассматривают предложенную теорию через призму своего концептуального видения и выстраивают диалог со зрителем с помощью созданных произведений искусства, и «Музей Моды» , представивший одежду и аксессуары из своей коллекции. Открывать проект будет новый директор «Музея Моды», Оксана Федорова .

«Теория красных дыр» рассказывает о том, что любой жизненный процесс в материальном мире в своем фундаменте имеет трехколонную систему: мысль - слово - действие, где действие (плод) является обязательным завершающим элементом для реализации мысли (зерно). Совокупность полученных результатов в виде ощутимых ценностей и есть наше бытие материального и духовного мира. Если же процесс останавливается на мысли или слове, в пространстве и структуре субъекта образуется «красная дыра», энергетическая субстанция, провоцирующая еще большее бездействие, лень и апатию к движению, что впоследствии формирует слои иллюзорного мышления. Со временем человек становится заложником собственных иллюзий, неспособным сделать шаг, чтобы выйти из замкнутого круга и осознать свое истинное место и суть в физическом мире. Только движение и действие способны разорвать иллюзию и помочь нам найти выход из красных дыр.

Свою «доказательную базу» и размышления на тему заявленной теории демонстрируют: Стелла Лабужская, Светлана Бояркина, Константин Лех, Наталия Берег, Юлия Неустроева и Иван Ковалевский . Каждый из художников показывает интересные, яркие, глубокие произведения искусства, ставя перед собой задачу не только донести до получателя актуальность заявленной проблематики, но и спровоцировать его к осознанному действию.

Константин Лех предлагает зрителю взаимодействие с мультимедийными объектами, герои которых - «запертые» в экран типичные жители социальных сетей. Они видят, когда кто-то смотрит на них, и притворяются для зрителя, выставляя напоказ позитивные сцены, тем самым образуя ловушку иллюзии, но личная глубокая проблема не исчезает и становится видимой, как только зритель оказывается вне поля зрения героев.

Стелла Лабужская предлагает наглядное доказательство теории с помощью метафоричного эксперимента, в результате которого более 30 мыслей опрошенных респондентов стали основой для создания арт-объектов, которые ранее представляли собой лишь полотна с дырами.

Видеоарт Наталии Берег демонстрирует борьбу героя с собственной ленью. Художница исследует вопрос ответного давления: с одной стороны, наших мыслей на ситуацию, с другой - внешних обстоятельств на нас.

Иван Ковалевский предлагает взглянуть, что скрывают привычные иконки соцсетей, которые современные люди видят чаще, чем лица своих близких. Через портретную живопись художник знакомит зрителя с создателями fb, vk, Instagram, youtube и whatsapp. Вышедшие из тени дирижеры облачной виртуальной системы предстают перед судом присяжных в качестве обвиняемых.

Арт-объект Светланы Бояркиной в виде фотобудки с загнанными головами в клетках внутри конструкции говорит о запертых мыслях, освободить которые зритель сможет, как только сделает фото.

Юлия Неустроева представляет зрителю коллаборацию искусства, одежды и посланников, способную привлечь внимание молодого поколения и дать ему возможность проявить себя в реальном мире, художница показывает образы крылатых людей - «посланников», которые имеют специальную одежду с отверстиями под крылья. Коллекция курток и пальто будет представлена на манекенах, а в качестве сопровождения запланирован видеоряд арт-дефиле.

«Музей Моды» представляет семь модных образов разного времени, выполненных в черно-красной цветовой гамме. Одежду можно воспринимать по-разному - как клетку, в которой вынуждена прятаться душа, чтобы не стать изгоем общества, или как возможность самовыражения, когда с помощью определенных предметов гардероба или модных аксессуаров человек рассказывает окружающему миру о себе и своем месте в мире.

Творения художников и каждый модный образ «Музея Моды» дополнены подробными экспликациями, позволяющими глубже понять концепцию теории красных дыр.

Кураторы проекта:

Стелла Лабужская (художник)

Полина Уханова (начальник выставочного отдела МВЦ «Музей Моды» ).

Изображение, полученное с помощью телескопа «Хаббл»: активная галактика M87. В ядре галактики, предположительно, находится чёрная дыра. На снимке видна релятивистская струя длиной около 5 тысяч световых лет

Чёрная дыра - область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света. Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда.

Теоретически возможность существования таких областей пространства-времени следует из некоторых точных решений уравнений Эйнштейна, первое из которых было получено Карлом Шварцшильдом в 1915 году. Точный изобретатель термина неизвестен, но само обозначение было популяризовано Джоном Арчибальдом Уилером и впервые публично употреблено в популярной лекции «Наша : известное и неизвестное» (англ. Our Universe: the Known and Unknown) 29 декабря 1967 года. Ранее подобные астрофизические объекты называли «сколлапсировавшие » или «коллапсары» (от англ. collapsed stars), а также «застывшие звёзды» (англ. frozen stars).

Вопрос о реальном существовании чёрных дыр тесно связан с тем, насколько верна теория гравитации, из которой следует их существование. В современной физике стандартной теорией гравитации, лучше всего подтверждённой экспериментально, является общая теория относительности (ОТО), уверенно предсказывающая возможность образования чёрных дыр (но их существование возможно и в рамках других (не всех) моделей: Альтернативные теории гравитации). Поэтому наблюдаемые данные анализируются и интерпретируются, прежде всего, в контексте ОТО, хотя, строго говоря, эта теория не является экспериментально подтверждённой для условий, соответствующих области пространства-времени в непосредственной близости от чёрных дыр звёздных масс (однако хорошо подтверждена в условиях, соответствующих сверхмассивным чёрным дырам). Поэтому утверждения о непосредственных доказательствах существования чёрных дыр, в том числе и в этой статье ниже, строго говоря, следует понимать в смысле подтверждения существования астрономических объектов, таких плотных и массивных, а также обладающих некоторыми другими наблюдаемыми свойствами, что их можно интерпретировать как чёрные дыры общей теории относительности.

Кроме того, чёрными дырами часто называют объекты, не строго соответствующие данному выше определению, а лишь приближающиеся по своим свойствам к такой чёрной дыре - например, это могут быть коллапсирующие звёзды на поздних стадиях коллапса. В современной астрофизике этому различию не придаётся большого значения, так как наблюдаемые проявления «почти сколлапсировавшей» («замороженной») звезды и «настоящей» («извечной») чёрной дыры практически одинаковы. Это происходит потому, что отличия физических полей вокруг коллапсара от таковых для «извечной» чёрной дыры уменьшаются по степенным законам с характерным временем порядка гравитационного радиуса, делённого на скорость света.

Различают 4 сценария образования чёрных дыр, два реалистичных: гравитационный коллапс (сжатие) достаточно массивной звезды; коллапс центральной части галактики или протогалактического газа; и два гипотетических: формирование чёрных дыр сразу после Большого Взрыва (первичные чёрные дыры); возникновение в ядерных реакциях высоких энергий.

Концепция массивного тела, гравитационное притяжение которого настолько велико, что скорость, необходимая для преодоления этого притяжения (вторая космическая скорость), равна или превышает скорость света, впервые была высказана в 1784 году Джоном Мичеллом в письме, которое он послал в Королевское общество. Письмо содержало расчёт, из которого следовало, что для тела с радиусом в 500 солнечных радиусов и с плотностью вторая космическая скорость на его поверхности будет равна скорости света. Таким образом, свет не сможет покинуть это тело, и оно будет невидимым. Мичелл предположил, что в космосе может существовать множество таких недоступных наблюдению объектов. В 1796 году Лаплас включил обсуждение этой идеи в свой труд «Exposition du Systeme du Monde», однако в последующих изданиях этот раздел был опущен. Тем не менее, именно благодаря Лапласу эта мысль получила некоторую известность.

На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX - начале XX века было установлено, что сформулированные Дж. Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке.

В ходе дальнейшей разработки электродинамики Г. Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А. Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований.

В 1905 году А. Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике.

Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световой скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО). Именно на ней и основывается современная теория астрофизических чёрных дыр.

По своему характеру ОТО является геометрической теорией. Она предполагает, что гравитационное поле представляет собой проявление искривления пространства-времени (которое, таким образом, оказывается псевдоримановым, а не псевдоевклидовым, как в специальной теории относительности). Связь искривления пространства-времени с характером распределения и движения заключающихся в нём масс даётся основными уравнениями теории - уравнениями Эйнштейна.

(Псевдо)римановыми называются пространства, которые в малых масштабах ведут себя «почти» как обычные (псевдо)евклидовы. Так, на небольших участках сферы теорема Пифагора и другие факты евклидовой геометрии выполняются с очень большой точностью. В своё время это обстоятельство и позволило построить евклидову геометрию на основе наблюдений над поверхностью Земли (которая в действительности не является плоской, а близка к сферической). Это же обстоятельство обусловило и выбор именно псевдоримановых (а не каких-либо ещё) пространств в качестве основного объекта рассмотрения в ОТО: свойства небольших участков пространства-времени не должны сильно отличаться от известных из СТО. Однако в больших масштабах римановы пространства могут сильно отличаться от евклидовых. Одной из основных характеристик такого отличия является понятие кривизны. Суть его состоит в следующем: евклидовы пространства обладают свойством абсолютного параллелизма: вектор X’, получаемый в результате параллельного перенесения вектора X вдоль любого замкнутого пути, совпадает с исходным вектором X. Для римановых пространств это уже не всегда так, что может быть легко показано на следующем примере. Предположим, что наблюдатель встал на пересечении экватора с нулевым меридианом лицом на восток и начал двигаться вдоль экватора. Дойдя до точки с долготой 180°, он изменил направление движения и начал двигаться по меридиану к северу, не меняя направления взгляда (то есть теперь он смотрит вправо по ходу). Когда он таким образом перейдёт через северный полюс и вернётся в исходную точку, то окажется, что он стоит лицом к западу (а не к востоку, как изначально). Иначе говоря, вектор, параллельно перенесённый вдоль маршрута следования наблюдателя, «прокрутился» относительно исходного вектора. Характеристикой величины такого «прокручивания» и является кривизна.

Так как чёрные дыры являются локальными и относительно компактными образованиями, то при построении их теории обычно пренебрегают наличием космологической постоянной, так как её эффекты для таких характерных размеров задачи неизмеримо малы. Тогда стационарные решения для чёрных дыр в рамках ОТО, дополненной известными материальными полями, характеризуются только тремя параметрами: массой (M), моментом импульса (L) и электрическим зарядом (Q), которые складываются из соответствующих характеристик вошедших в чёрную дыру при коллапсе и упавших в неё позднее тел и излучений (если в природе существуют магнитные монополи, то чёрные дыры могут иметь также магнитный заряд (G), но пока подобные частицы не обнаружены). Любая чёрная дыра стремится в отсутствие внешних воздействий стать стационарной, что было доказано усилиями многих физиков-теоретиков, из которых особо следует отметить вклад нобелевского лауреата Субраманьяна Чандрасекара, перу которого принадлежит фундаментальная для этого направления монография «Математическая теория чёрных дыр». Более того, представляется, что никаких других характеристик, кроме этих трёх, у не возмущаемой снаружи чёрной дыры быть не может, что формулируется в образной фразе Уилера: «Чёрные дыры не имеют волос».

Решение Шварцшильда (1916 год, Карл Шварцшильд) - статичное решение для сферически-симметричной чёрной дыры без вращения и без электрического заряда.
Решение Рейснера - Нордстрёма (1916 год, Ганс Рейснер и 1918 год, Гуннар Нордстрём) - статичное решение сферически-симметричной чёрной дыры с зарядом, но без вращения.
Решение Керра (1963 год, Рой Керр) - стационарное, осесимметричное решение для вращающейся чёрной дыры, но без заряда.
Решение Керра - Ньюмена (1965 год, Э. Т. Ньюмен (англ.), Э. Кауч, К. Чиннапаред, Э. Экстон, Э. Пракаш и Р. Торренс) - наиболее полное на данный момент решение: стационарное и осесимметричное, зависит от всех трёх параметров.

Решение для вращающейся чёрной дыры чрезвычайно сложно. Его вывод был описан Керром в 1963 году очень кратко, и лишь спустя год детали были опубликованы Керром и Шильдом в малоизвестных трудах конференции. Подробное изложение вывода решений Керра и Керра - Ньюмена было опубликовано в 1969 году в известной работе Дебнея, Керра и Шильда. Последовательный вывод решения Керра был также проделан Чандрасекаром более чем на пятнадцать лет позже.

Считается, что наибольшее значение для астрофизики имеет решение Керра, так как заряженные чёрные дыры должны быстро терять заряд, притягивая и поглощая противоположно заряженные ионы и пыль из космического пространства. Существует также гипотеза, связывающая гамма-всплески с процессом взрывной нейтрализации заряженных чёрных дыр путём рождения из вакуума электрон-позитронных пар (Р. Руффини с сотрудниками), но она оспаривается рядом учёных.

Теоремы об «отсутствии волос» у чёрной дыры (англ. No hair theorem) говорят о том, что у стационарной чёрной дыры внешних характеристик, помимо массы, момента импульса и определённых зарядов (специфических для различных материальных полей), быть не может (в том числе и радиуса), и детальная информация о материи будет потеряна (и частично излучена вовне) при коллапсе. Большой вклад в доказательство подобных теорем для различных систем физических полей внесли Брэндон Картер, Вернер Израэль, Роджер Пенроуз, Пётр Крушель (Chruściel), Маркус Хойслер. Сейчас представляется, что данная теорема верна для известных в настоящее время полей, хотя в некоторых экзотических случаях, аналогов которых в природе не обнаружено, она нарушается.

Рисунок художника: аккреционный диск горячей плазмы, вращающийся вокруг чёрной дыры.

Согласно теореме Биркгофа, гравитационное поле любого сферически симметричного распределения материи вне её даётся решением Шварцшильда. Поэтому слабо вращающиеся чёрные дыры, как и пространство-время вблизи Солнца и , в первом приближении тоже описываются этим решением.

Две важнейшие черты, присущие чёрным дырам в модели Шварцшильда - это наличие горизонта событий (он по определению есть у любой чёрной дыры) и сингулярности, которая отделена этим горизонтом от остальной Вселенной.

Решением Шварцшильда точно описывается изолированная невращающаяся, незаряженная и не испаряющаяся чёрная дыра (это сферически симметричное решение уравнений гравитационного поля (уравнений Эйнштейна) в вакууме). Её горизонт событий - это сфера, радиус которой, называется гравитационным радиусом или радиусом Шварцшильда.

Все характеристики решения Шварцшильда однозначно определяются одним параметром - массой.

Объекты, размер которых наиболее близок к своему радиусу Шварцшильда, но которые ещё не являются чёрными дырами, - это .

Можно ввести понятие «средней плотности» чёрной дыры, поделив её массу на «объём, заключённый под горизонтом событий».

Средняя плотность падает с ростом массы чёрной дыры. Так, если чёрная дыра с массой порядка солнечной обладает плотностью, превышающей ядерную плотность, то сверхмассивная чёрная дыра с массой в 109 солнечных масс (существование таких чёрных дыр подозревается в ) обладает средней плотностью порядка 20 кг/м³, что существенно меньше плотности воды. Таким образом, чёрную дыру можно получить не только сжатием имеющегося объёма вещества, но и экстенсивным путём, накоплением огромного количества материала.

Оптическое искажение аккреционного диска вокруг чёрной дыры

Для более точного описания реальных чёрных дыр необходим учёт наличия момента импульса. Кроме того, малые, но концептуально важные добавки для чёрных дыр астрофизических масс - излучение Старобинского и Зельдовича и излучение Хокинга - следуют из квантовых поправок. Учитывающую это теорию (то есть ОТО, в которой правая часть уравнений Эйнштейна есть среднее по квантовому состоянию от тензора энергии-импульса) обычно называют «полуклассической гравитацией». Представляется, что для очень малых чёрных дыр эти квантовые поправки должны стать определяющими, однако это точно неизвестно, так как отсутствует непротиворечивая модель квантовой гравитации.

В 1915 году К. Шварцшильд выписал решения уравнений Эйнштейна без космологического члена для пустого пространства в сферически симметричном статическом случае (позднее Биркхоф показал, что предположение статичности излишне).

Решение Рейснера - Нордстрёма:

Это статичное решение (не зависящее от временной координаты) уравнений Эйнштейна для сферически-симметричной чёрной дыры с зарядом, но без вращения.

Это решение, при продолжении за горизонт, аналогично шварцшильдовскому, порождает удивительную геометрию пространства-времени, в которой через чёрные дыры соединяется бесконечное количество «вселенных», в которые можно попадать последовательно через погружения в чёрную дыру.

Эргосфера вокруг керровской чёрной дыры

Чёрная дыра Керра обладает рядом замечательных свойств. Вокруг горизонта событий существует область, называемая эргосферой, внутри которой телам невозможно покоиться относительно удалённых наблюдателей. Они могут только вращаться вокруг чёрной дыры по направлению её вращения. Этот эффект называется «увлечением инерциальной системы отсчёта» (англ. frame-dragging) и наблюдается вокруг любого вращающегося массивного тела, например, вокруг Земли или Солнца, но в гораздо меньшей степени. Однако саму эргосферу ещё можно покинуть, эта область не является захватывающей. Размеры эргосферы зависят от углового момента вращения.

Параметры чёрной дыры не могут быть произвольными. Угловой момент ЧД не должен превышать J_{max} = M^2, что тоже представляет собой частный случай ограничения Керра - Ньюмена, на этот раз для чёрной дыры с нулевым зарядом (Q = 0). В предельном случае J=J_{max} метрика называется предельным решением Керра.

Это решение также порождает удивительную геометрию пространства-времени при его продолжении за горизонт. Однако требуется анализ устойчивости соответствующей конфигурации, которая может быть нарушена за счёт взаимодействия с квантовыми полями и других эффектов. Для пространства-времени Керра анализ был проведён Субраманьяном Чандрасекаром и другими физиками. Было обнаружено, что керровская чёрная дыра - а точнее её внешняя область - является устойчивой. Аналогично, как частные случаи, оказались устойчивыми шварцшильдовские дыры, а модификация алгоритма позволила доказать устойчивость и Рейснер-нордстрёмовских чёрных дыр.

Трёхпараметрическое семейство Керра - Ньюмена - наиболее общее решение, соответствующее конечному состоянию равновесия не возмущаемой внешними полями чёрной дыры (согласно теоремам об «отсутствии волос» для известных физических полей).

Метрику Керра - Ньюмена (и просто Керра и Рейснера - Нордстрёма, но не Шварцшильда) можно аналитически продолжить также через горизонт таким образом, чтобы соединить в чёрной дыре бесконечно много «независимых» пространств. Это могут быть как «другие» вселенные, так и удалённые части нашей Вселенной. В таким образом полученных пространствах есть замкнутые времениподобные кривые: путешественник может, в принципе, попасть в своё прошлое, то есть встретиться с самим собой. Вокруг горизонта событий вращающейся заряженной чёрной дыры также существует область, называемая эргосферой, практически эквивалентная эргосфере из решения Керра; находящийся там стационарный наблюдатель обязан вращаться с положительной угловой скоростью (в сторону вращения чёрной дыры).

Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы Старобинским и Зельдовичем в 1974 году - для вращающихся чёрных дыр, а затем, в общем случае, С. Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, Хокинг предположил, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры.

Предположительно, состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном безмассовые фотоны и лёгкие нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру.

На этой основе была построена термодинамика чёрных дыр, в том числе введено ключевое понятие энтропии чёрной дыры, которая оказалась пропорциональна площади её горизонта событий.

Скорость испарения чёрной дыры тем больше, чем меньше её размеры. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными.

За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным.

При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности.

В то же время, большие чёрные дыры, температура которых ниже температуры реликтового излучения Вселенной (2,7 К), на современном этапе развития Вселенной могут только расти, так как испускаемое ими излучение имеет меньшую энергию, чем поглощаемое.

Без квантовой теории гравитации невозможно описать заключительный этап испарения, когда чёрные дыры становятся микроскопическими (квантовыми).

Тело, свободно падающее под действием сил гравитации, находится в состоянии невесомости и испытывает действие только приливных сил, которые при падении в чёрную дыру растягивают тело в радиальном направлении, а в тангенциальном – сжимают. Величина этих сил растёт и стремится к бесконечности при ~r\to 0 (где r - расстояние до центра дыры).

В некоторый момент собственного времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине (её радиус в точке, где находится тело, и есть ~r), сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность) уже нельзя, даже двигаясь со скоростью света.

С точки зрения удалённого наблюдателя, падение в чёрную дыру будет выглядеть иначе. Пусть, например, тело будет светящимся и, кроме того, будет посылать сигналы назад с определённой частотой. Вначале удалённый наблюдатель будет видеть, что тело, находясь в процессе свободного падения, постепенно разгоняется под действием сил тяжести по направлению к центру. Цвет тела не изменяется, частота детектируемых сигналов практически постоянна. Но когда тело начнёт приближаться к горизонту событий, фотоны, идущие от тела, будут испытывать всё большее и большее красное смещение, вызванное двумя причинами: эффектом Доплера и гравитационным замедлением времени - из-за гравитационного поля все физические процессы с точки зрения удалённого наблюдателя будут идти всё медленнее и медленнее, например, часы, закреплённые в Шварцшильдовском пространстве-времени на радиальной координате r без вращения, будут идти медленнее бесконечно удалённых. Расстояния также будут восприниматься по-разному. Удалённому наблюдателю будет казаться, что тело в чрезвычайно сплющенном виде будет замедляться, приближаясь к горизонту событий и, в конце концов, практически остановится. Частота сигнала будет резко падать. Длина волны испускаемого телом света будет стремительно расти, так что свет быстро превратится в радиоволны и далее в низкочастотные электромагнитные колебания, зафиксировать которые уже будет невозможно. Пересечения телом горизонта событий наблюдатель не увидит никогда, и в этом смысле падение в чёрную дыру будет длиться бесконечно долго.

Есть, однако, момент, начиная с которого повлиять на падающее тело удалённый наблюдатель уже не сможет. Луч света, посланный вслед этому телу, его либо вообще никогда не догонит, либо догонит уже за горизонтом. Кроме того, расстояние между телом и горизонтом событий, а также «толщина» сплющенного (с точки зрения стороннего наблюдателя) тела довольно быстро достигнут планковской длины и (с математической точки зрения) будут уменьшаться и далее. Для реального физического наблюдателя (ведущего измерения с планковской погрешностью) это равносильно тому, что масса чёрной дыры увеличится на массу падающего тела, а значит радиус горизонта событий возрастёт, и падающее тело окажется «внутри» горизонта событий за конечное время. Аналогично будет выглядеть для удалённого наблюдателя и процесс гравитационного коллапса. Вначале вещество ринется к центру, но вблизи горизонта событий оно станет резко замедляться, его излучение уйдёт в радиодиапазон, и в результате удалённый наблюдатель увидит, что звезда погасла.

Теория струн позволяет выстраивание исключительно плотных и мелкомасштабных структур из самих струн и других описываемых теорией объектов - бран, часть из которых имеют более трёх измерений. При этом чёрная дыра может быть составлена из струн и бран очень большим числом способов, а самым удивительным является то обстоятельство, что это число микросостояний ровно соответствует энтропии чёрной дыры, предсказанной Хокингом и его коллегой Бекенштейном в 1970-е годы. Это один из наиболее известных результатов теории струн, полученных в 1990-е годы.

В 1996 г. струнные теоретики Эндрю Строминджер и Кумрун Вафа, опираясь на более ранние результаты Сасскинда и Сена, опубликовали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга». В этой работе Строминджеру и Вафе удалось использовать теорию струн для конструирования из микроскопических компонентов определённого класса чёрных дыр, так называемых экстремально заряженных дыр Рейснера - Нордстрёма, а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого.

Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход. Суть в том, что они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путём кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции.

Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд, остаются неизменными. Тогда энтропия этого состояния по определению равна логарифму полученного числа - числа возможных микросостояний термодинамической системы. Затем они сравнили результат с площадью горизонта событий чёрной дыры - эта площадь пропорциональна энтропии чёрной дыры, как предсказано Бекенштейном и Хокингом на основе классического понимания, - и получили идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Практически одновременно, с разностью в несколько недель, к такой же энтропии для почти экстремальных чёрных дыр пришли и Курт Каллан и Хуан Малдасена из Принстона.

Результаты этой группы, однако, простирались далее. Так как они смогли сконструировать не совсем экстремальную чёрную дыру, они смогли рассчитать также и скорость испарения данного объекта, которая совпала с результатами Хокинга. Этот результат был подтверждён в том же году работами двух пар индийских физиков: Самит Дас и Самир Матур, и Гаутам Мандал и Спента Вадья получили ту же скорость испарения. Этот успех послужил одним из доказательств отсутствия потери информации при образовании и испарении чёрных дыр.

В 2004 году команда Самира Матура из университета Огайо занялась вопросом о внутреннем строении струнной чёрной дыры. В результате они показали, что почти всегда вместо массы отдельных струн возникает одна - очень длинная струна, кусочки которой будут постоянно «выпирать» за горизонт событий за счёт квантовых флуктуаций, и соответственно отрываться, обеспечивая испарение чёрной дыры. Сингулярности внутри такого клубка не образуется, а его размер в точности совпадает с размером классического горизонта. В другой модели, которую развили Гэри Горовиц из Университета Калифорнии в Санта-Барбаре и Хуан Малдасена из Института перспективных исследований, сингулярность присутствует, но информация в неё не попадает, так как за счёт квантовой телепортации выходит из чёрной дыры, изменяя характеристики излучения Хокинга, которое теперь становится не совсем тепловым - эти построения основываются на гипотезе AdS/CFT-соответствия. Все такие модели, однако, до сих пор носят предварительный характер.

Белая дыра является временно́й противоположностью чёрной дыры - если из чёрной дыры невозможно выбраться, то в белую дыру невозможно попасть. Белой дырой является область IV в расширенном пространстве-времени Шварцшильда - в неё невозможно попасть из областей I и III, а вот из неё попасть в области I и III можно. Так как общая теория относительности и большинство других теорий гравитации обратимы во времени, то можно развернуть решение гравитационного коллапса во времени и получить объект, который не схлопывается, формируя вокруг себя горизонт событий будущего и сингулярность под ним, а наоборот, объект, который рождается из невидимой сингулярности под горизонтом событий прошлого и затем разлетается, уничтожая горизонт - это и будет белая дыра.

На сегодняшний день неизвестны физические объекты, которые можно достоверно считать белыми дырами. Более того, неизвестны и теоретические механизмы их образования помимо реликтового - сразу после Большого взрыва, а также весьма спекулятивной идеи, которую невозможно подтвердить расчётами, что белые дыры могут образовываться при выходе из-за горизонта событий вещества чёрной дыры, находящейся в другом времени. Нет и предпосылок по методам поиска белых дыр. Исходя из этого, белые дыры считаются сейчас абсолютно гипотетическими объектами, допустимыми теоретически общей теорией относительности, но вряд ли существующими во Вселенной, в отличие от чёрных дыр.

Израильские астрономы Алон Реттер и Шломо Хеллер предполагают, что аномальный гамма-всплеск GRB 060614, который произошёл в 2006 году, был «белой дырой».

Со времени теоретического предсказания чёрных дыр оставался открытым вопрос об их существовании, так как наличие решения типа «чёрная дыра» ещё не гарантирует, что существуют механизмы образования подобных объектов во Вселенной. С математической точки зрения известно, что как минимум коллапс гравитационных волн в общей теории относительности устойчиво ведёт к формированию ловушечных поверхностей, а следовательно, и чёрной дыры, как доказано Деметриосом Кристодулу в 2000-х годах (Премия Шао за 2011 год).

С физической точки зрения известны механизмы, которые могут приводить к тому, что некоторая область пространства-времени будет иметь те же свойства (ту же геометрию), что и соответствующая область у чёрной дыры.

Коллапс звезды. Метрика внутри более затенённой области нам неизвестна (или неинтересна)

Изображённая тёмным цветом область заполнена веществом звезды и метрика её определяется свойствами этого вещества. А вот светло-серая область совпадает с соответствующей областью пространства Шварцшильда, см. рис. выше. Именно о таких ситуациях в астрофизике говорят как об образовании чёрных дыр, что с формальной точки зрения является некоторой вольностью речи. Снаружи, тем не менее, уже очень скоро этот объект станет практически неотличим от чёрной дыры по всем своим свойствам, поэтому данный термин применим к получающейся конфигурации с очень большой степенью точности.

В реальности из-за аккреции вещества, с одной стороны, и (возможно) хокинговского излучения, с другой, пространство-время вокруг коллапсара отклоняется от приведённых выше точных решений уравнений Эйнштейна. И хотя в любой небольшой области (кроме окрестностей сингулярности) метрика искажена незначительно, глобальная причинная структура пространства-времени может отличаться кардинально. В частности, настоящее пространство-время может, по некоторым теориям, уже и не обладать горизонтом событий. Это связано с тем, что наличие или отсутствие горизонта событий определяется, среди прочего, и событиями, происходящими в бесконечно удаленном будущем наблюдателя.

По современным представлениям, есть четыре сценария образования чёрной дыры:

Гравитационный коллапс (катастрофическое сжатие) достаточно массивной звезды на конечном этапе её эволюции.
Коллапс центральной части галактики или протогалактического газа. Современные представления помещают огромную чёрную дыру в центр многих, если не всех, спиральных и эллиптических галактик. Например, в центре нашей Галактики находится чёрная дыра Стрелец A.
Формирование чёрных дыр в момент сразу после Большого Взрыва в результате флуктуаций гравитационного поля и/или материи. Такие чёрные дыры называются первичными.
Возникновение чёрных дыр в ядерных реакциях высоких энергий - квантовые чёрные дыры.

Моделирование гравитационного линзирования чёрной дырой, которая искажает изображение галактики, перед которой она проходит.

Чёрные дыры звёздных масс образуются как конечный этап жизни звезды, после полного выгорания термоядерного топлива и прекращения реакции звезда теоретически должна начать остывать, что приведёт к уменьшению внутреннего давления и сжатию звезды под действием гравитации. Сжатие может остановиться на определённом этапе, а может перейти в стремительный гравитационный коллапс. В зависимости от массы звезды и вращательного момента возможны следующие конечные состояния:

Погасшая очень плотная звезда, состоящая в основном, в зависимости от массы, из гелия, углерода, кислорода, неона, магния, кремния или железа (основные элементы перечислены в порядке возрастания массы остатка звезды). Такие остатки называют белыми карликами, масса их ограничивается сверху пределом Чандрасекара - около 1,4 солнечных масс.
Нейтронная звезда, масса которой ограничена пределом Оппенгеймера - Волкова - 2-3 солнечные массы.
Чёрная дыра.

По мере увеличения массы остатка звезды происходит движение равновесной конфигурации вниз по изложенной последовательности. Вращательный момент увеличивает предельные массы на каждой ступени, но не качественно, а количественно (максимум в 2-3 раза).

Чёрная дыра NGC 300 X-1 в представлении художника. Иллюстрация ESO.

Условия (главным образом, масса), при которых конечным состоянием эволюции звезды является чёрная дыра, изучены недостаточно хорошо, так как для этого необходимо знать поведение и состояния вещества при чрезвычайно высоких плотностях, недоступных экспериментальному изучению. Дополнительные сложности представляет моделирование звёзд на поздних этапах их эволюции из-за сложности возникающего химического состава и резкого уменьшения характерного времени протекания процессов. Достаточно упомянуть, что часть крупнейших космических катастроф, вспышки сверхновых, возникает именно на этих этапах эволюции звёзд. Различные модели дают нижнюю оценку массы чёрной дыры, получающейся в результате гравитационного коллапса, от 2,5 до 5,6 масс Солнца. Характерный размер чёрной дыры при этом очень мал - до нескольких десятков километров.

Впоследствии чёрная дыра может разрастись за счёт поглощения вещества - как правило, это газ соседней звезды в двойных звёздных системах (столкновение чёрной дыры с любым другим астрономическим объектом очень маловероятно из-за её малого диаметра). Процесс падения газа на любой компактный астрофизический объект, в том числе и на чёрную дыру, называется аккрецией. При этом из-за вращения газа формируется аккреционный диск, в котором вещество разгоняется до релятивистских скоростей, нагревается и в результате сильно излучает, в том числе и в рентгеновском диапазоне, что даёт принципиальную возможность обнаруживать такие аккреционные диски (и, следовательно, чёрные дыры) при помощи ультрафиолетовых и рентгеновских телескопов. Основной проблемой является малая величина и трудность регистрации отличий аккреционных дисков нейтронных звёзд и чёрных дыр, что приводит к неуверенности в идентификации астрономических объектов с чёрными дырами. Основное отличие состоит в том, что газ, падающий на все объекты, рано или поздно встречает твёрдую поверхность, что приводит к интенсивному излучению при торможении, но облако газа, падающее на чёрную дыру, из-за неограниченно растущего гравитационного замедления времени (красного смещения) просто быстро меркнет при приближении к горизонту событий, что наблюдалось телескопом Хаббла в случае источника Лебедь X-1.

Столкновение чёрных дыр с другими звёздами, а также столкновение нейтронных звёзд, вызывающее образование чёрной дыры, приводит к мощнейшему гравитационному излучению, которое, как ожидается, можно будет обнаруживать в ближайшие годы при помощи гравитационных телескопов. В настоящее время есть сообщения о наблюдении столкновений в рентгеновском диапазоне. 25 августа 2011 года появилось сообщение о том, что впервые в истории науки группа японских и американских специалистов смогла в марте 2011 года зафиксировать момент гибели звезды, которую поглощает чёрная дыра.

Разросшиеся очень большие чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактики - Стрелец A.

В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством учёных надёжно доказанным астрономическими наблюдениями.

Американские астрономы установили, что массы сверхмассивных чёрных дыр могут быть значительно недооценены. Исследователи установили, что для того, чтобы звёзды двигались в галактике М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как минимум 6,4 миллиарда солнечных масс, то есть в два раза больше нынешних оценок ядра М87, которые составляют 3 млрд солнечных масс.

Первичные чёрные дыры в настоящее время носят статус гипотезы. Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе - их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр.

Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации. Однако из общих соображений весьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра - планковская чёрная дыра. Её масса - порядка 10в−5 г, радиус - 10в−35 м. Комптоновская длина волны планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Таким образом, все «элементарные объекты» можно разделить на элементарные частицы (их длина волны больше их гравитационного радиуса) и чёрные дыры (длина волны меньше гравитационного радиуса). Планковская чёрная дыра является пограничным объектом, для неё можно встретить название максимон, указывающее на то, что это самая тяжёлая из возможных элементарных частиц. Другой иногда употребляемый для её обозначения термин - планкеон.

В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 1026 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры.

Эксперименты по протон-протонным столкновениям с полной энергией 7 ТэВ на Большом адронном коллайдере показали, что этой энергии недостаточно для образования микроскопических чёрных дыр. На основании этих данных делается вывод, что микроскопические чёрные дыры должны быть тяжелее 3,5-4,5 ТэВ в зависимости от конкретной реализации.

На данный момент учёными обнаружено около тысячи объектов во Вселенной, которые причисляются к чёрным дырам. Всего же, предполагают учёные, существует десятки миллионов таких объектов.

В настоящее время единственный достоверный способ отличить чёрную дыру от объекта другого типа состоит в том, чтобы измерить массу и размеры объекта и сравнить его радиус с гравитационным радиусом.

Наиболее надёжными считаются свидетельства о существовании сверхмассивных чёрных дыр в центральных областях галактик. Сегодня разрешающая способность телескопов недостаточна для того, чтобы различать области пространства размером порядка гравитационного радиуса чёрной дыры (помимо чёрной дыры в центре нашей Галактики, которая наблюдается методами радиоинтерферометрии со сверхдлинной базой на пределе их разрешающей способности). Поэтому в идентификации центральных объектов галактик как чёрных дыр есть определённая степень допущения (кроме центра нашей Галактики). Считается, что установленный верхний предел размеров этих объектов недостаточен, чтобы рассматривать их как скопления белых или коричневых карликов, нейтронных звёзд или даже чёрных дыр обычной массы.

Существует множество способов определить массу и ориентировочные размеры сверхмассивного тела, однако большинство из них основано на измерении характеристик орбит вращающихся вокруг них объектов (звёзд, радиоисточников, газовых дисков). В самом простейшем и достаточно часто встречающемся случае обращение происходит по кеплеровским орбитам, о чём говорит пропорциональность скорости вращения спутника квадратному корню из большой полуоси орбиты.

В ряде случаев, когда объекты-спутники представляют собой сплошную среду (газовый диск, плотное звёздное скопление), которая своим тяготением влияет на характеристики орбиты, радиальное распределение массы в ядре галактики получается путём решения т. н. бесстолкновительного уравнения Бернулли.

Если радиоисточник Стрелец A находится около горизонта событий чёрной дыры, он будет выглядеть как пятно, размазанное и усиленное гравитационным линзированием. Поэтому если источник находится вблизи от горизонта событий и покрывает всю дыру, его размер должен быть не меньше 5,2 радиуса Шварцшильда, что для объекта в центре нашей Галактики даёт угловой размер примерно в 52 микросекунды дуги. Это даже несколько больше наблюдаемого в 1,3 мм радиоволнах размера в 37^{+16}_{-10} микросекунд, что показывает, что излучение не исходит с поверхности всей дыры, но сосредоточено в области рядом с ней, возможно, на краю аккреционного диска или в релятивистской струе материала, выброшенного из этого диска.

Основным методом поиска сверхмассивных чёрных дыр в настоящее время является исследование распределения яркости и скорости движения звёзд в зависимости от расстояния до центра галактики. Распределение яркости снимается фотометрическими методами при фотографировании галактик с большим разрешением, скорости звёзд - по красному смещению и уширению линий поглощения в спектре звезды.

Поскольку чёрная дыра имеет большую массу при низкой светимости, одним из признаков наличия в центре галактики сверхмассивной чёрной дыры может служить высокое отношение массы к светимости для ядра галактики. Возможны, однако, альтернативные объяснения этого феномена: скопления белых или коричневых карликов, нейтронных звёзд, чёрных дыр обычной массы.

В последнее время благодаря повышению разрешающей способности телескопов стало возможным наблюдать и измерять скорости движения отдельных объектов в непосредственной близости от центра галактик. Так, при помощи спектрографа FOS (Faint Object Spectrograph) космического телескопа «Хаббл» группой под руководством Х. Форда была обнаружена вращающаяся газовая структура в центре галактики M87. Скорость вращения газа на расстоянии около 60 св. лет от центра галактики составила 550 км/с, что соответствует кеплеровской орбите с массой центрального тела порядка 3·10в9 масс солнца. Несмотря на гигантскую массу центрального объекта, нельзя сказать с полной определённостью, что он является чёрной дырой, поскольку гравитационный радиус такой чёрной дыры составляет около 0,001 св. года.

В 1995 г. группа под руководством Дж. Морана наблюдала точечные микроволновые источники, вращающиеся в непосредственной близости от центра галактики NGС 4258. Наблюдения проводились при помощи радиоинтерферометра, включавшего сеть наземных радиотелескопов, что позволило наблюдать центр галактики с угловым разрешением 0″,001. Всего было обнаружено 17 компактных источников, расположенных в дискообразной структуре радиусом около 10 св. лет. Источники вращались в соответствии с кеплеровским законом (скорость вращения обратно пропорциональна квадратному корню из расстояния), откуда масса центрального объекта была оценена как 4·10в7 масс солнца, а верхний предел радиуса ядра - 0,04 св. года.

В 1993-1996 годах А. Экарт и Р. Генцель наблюдали движение отдельных звёзд в окрестностях центра нашей Галактики. Наблюдения проводились в инфракрасных лучах, для которых слой космической пыли вблизи ядра галактики не является препятствием. В результате удалось точно измерить параметры движения 39 звёзд, находящихся на расстоянии от 0,13 до 1,3 св. года от центра галактики. Было установлено, что движение звёзд соответствует кеплеровскому, центральное тело массой 2,5·10в6 масс солнца и радиусом не более 0,05 св. года соответствует положению компактного радиоисточника Стрелец-А (Sgr A).

В 1991 году вступил в строй инфракрасный матричный детектор SHARP I на 3,5-метровом телескопе Европейской южной обсерватории (ESO) в Ла-Силла (Чили). Камера диапазона 1-2,5 мкм обеспечивала разрешение 50 угловых мкс на 1 пиксель матрицы. Кроме того, был установлен 3D-спектрометр на 2,2-метровом телескопе той же обсерватории.

С появлением инфракрасных детекторов высокого разрешения стало возможным наблюдать в центральных областях галактики отдельные звёзды. Изучение их спектральных характеристик показало, что большинство из них относятся к молодым звёздам возрастом несколько миллионов лет. Вопреки ранее принятым взглядам, было установлено, что в окрестностях сверхмассивной чёрной дыры активно идёт процесс звездообразования. Полагают, что источником газа для этого процесса являются два плоских аккреционных газовых кольца, обнаруженных в центре Галактики в 1980-х годах. Однако внутренний диаметр этих колец слишком велик, чтобы объяснить процесс звездообразования в непосредственной близости от чёрной дыры. Звёзды, находящиеся в радиусе 1″ от чёрной дыры (так называемые «S-звёзды») имеют случайное направление орбитальных моментов, что противоречит аккреционному сценарию их возникновения. Предполагается, что это горячие ядра красных гигантов, которые образовались в отдалённых районах галактики, а затем мигрировали в центральную зону, где их внешние оболочки были сорваны приливными силами чёрной дыры.

К 1996 году были известны более 600 звёзд в области диаметром около парсека (25″) вокруг радиоисточника Стрелец А, а для 220 из них были надёжно определены радиальные скорости. Оценка массы центрального тела составляла 2-3·10в6 масс Солнца, радиуса - 0.2 св. лет

В настоящее время (октябрь 2009 года) разрешающая способность инфракрасных детекторов достигла 0.”0003 (что на расстоянии 8 кпс соответствует 2.5 а. е.). Число звёзд в пределах 1 пс от центра галактики, для которых измерены параметры движения, превысило 6000.

Рассчитаны точные орбиты для ближайших к центру галактики 28 звёзд, наиболее интересной среди которых является звезда S2. За время наблюдений (1992-2007), она сделала полный оборот вокруг чёрной дыры, что позволило с большой точностью оценить параметры её орбиты. Период обращения S2 составляет 15,8 ± 0,11 лет, большая полуось орбиты 0,”123 ± 0,001 (1000 а. е.), эксцентриситет 0,880 ± 0,003, максимальное приближение к центральному телу 0,”015 или 120 а. е. Точное измерение параметров орбиты S2, которая оказалась близкой к кеплеровской, позволила с высокой точностью оценить массу центрального тела.

Гравитационный радиус чёрной дыры массой 4·10в6 масс солнца составляет примерно 12 млн км или 0,08 а. е., то есть в 1400 раз меньше, чем ближайшее расстояние, на которое подходила к центральному телу звезда S2. Однако среди исследователей практически нет сомнений, что центральный объект не является скоплением звёзд малой светимости, нейтронных звёзд или чёрных дыр, поскольку сконцентрированные в таком малом объёме они неизбежно бы слились за короткое время в единый сверхмассивный объект, который, согласно ОТО, не может быть ничем иным, кроме чёрной дыры.

В 1963 году новозеландский математик Рой П. Керр нашёл полное решение уравнений гравитационного поля для вращающейся чёрной дыры, названное решением Керра. После этого было составлено математическое описание геометрии пространства-времени, окружающего массивный вращающийся объект. Известно однако, что хотя внешнее решение при коллапсе стремится к внешней части решения Керра, для внутренней структуры сколлапсировавшего объекта это уже не так. Современные учёные ведут исследования с целью изучить структуру вращающихся чёрных дыр, возникающих в процессе реального коллапса.

Горизонт событий будущего является необходимым признаком чёрной дыры как теоретического объекта. Горизонт событий сферически-симметричной чёрной дыры называется сферой Шварцшильда и имеет характерный размер, называемый гравитационным радиусом.

Энергия, возможно, может покидать чёрную дыру посредством т. н. излучения Хокинга, представляющего собой квантовый эффект. Если так, истинные горизонты событий в строгом смысле у сколлапсировавших объектов в нашей Вселенной не формируются. Тем не менее, так как астрофизические сколлапсировавшие объекты - это очень классические системы, то точность их описания классической моделью чёрной дыры достаточна для всех мыслимых астрофизических приложений.

Известно, что горизонт чёрной дыры ведёт себя подобно мембране: возмущения горизонта, вызываемые внешними телами и полями, при отключении взаимодействия начинают колебаться и частично излучаются вовне в виде гравитационных волн, а частично поглощаются самой дырой. Затем горизонт успокаивается, и чёрная дыра приходит в равновесное состояние чёрной дыры Керра - Ньюмена. Особенности этого процесса интересны с точки зрения генерации гравитационных волн, которые могут быть зарегистрированы гравитационно-волновыми обсерваториями в ближайшем будущем.

При столкновении чёрных дыр происходит их слияние, сопровождающееся излучением гравитационных волн. При этом величина этой энергии составляет несколько процентов от массы обеих чёрных дыр. Поскольку эти столкновения происходят далеко от Земли, доходящий сигнал слаб, поэтому их детектирование затруднено, но подобные события являются по современным представлениям самыми интенсивными излучателями гравитационных волн во Вселенной и представляют исключительный интерес для гравитационно-волновой астрономии.

Существование таких линий в рамках общей теории относительности было впервые вынесено на обсуждение Куртом Гёделем в 1949 году на основании полученного им точного решения уравнений Эйнштейна, известного как метрика Гёделя. Подобные кривые возникают и в других решениях, таких как «цилиндр Типлера» и «проходимая кротовая нора». Существование замкнутых временеподобных кривых позволяет совершать путешествия во времени со всеми связанными с ними парадоксами. В пространстве-времени Керра также существуют замкнутые времениподобные кривые, на которые можно попасть из нашей Вселенной: они отделены от нас горизонтом, однако могут выходить в другие вселенные этого решения. Тем не менее, вопрос об их действительном существовании в случае реального коллапса космического тела пока не решён.

Часть физиков предполагает, что будущая теория квантовой гравитации наложит запрет на существование замкнутых времениподобных линий. Эту идею Стивен Хокинг назвал гипотезой о защищенности хронологии (англ. chronology protection conjecture).

Исчезновение информации в чёрной дыре представляет серьёзнейшую проблему, стоящую перед квантовой гравитацией, поскольку оно несовместимо с общими принципами квантовой механики.

В рамках классической (неквантовой) теории гравитации чёрная дыра - объект неуничтожимый. Она может только расти, но не может ни уменьшиться, ни исчезнуть совсем. Это значит, что в принципе возможна ситуация, что попавшая в чёрную дыру информация на самом деле не исчезла, она продолжает находиться внутри чёрной дыры, но просто ненаблюдаема снаружи. Иная разновидность этой же мысли: если чёрная дыра служит мостом между нашей Вселенной и какой-нибудь другой вселенной, то информация, возможно, просто перебросилась в другую вселенную.

Однако, если учитывать квантовые явления, гипотетический результат будет содержать противоречия. Главный результат применения квантовой теории к чёрной дыре состоит в том, что она постепенно испаряется благодаря излучению Хокинга. Это значит, что настанет такой момент, когда масса чёрной дыры снова уменьшится до первоначального значения (перед бросанием в неё тела). Таким образом, в результате становится очевидно, что чёрная дыра превратила исходное тело в поток разнообразных излучений, но сама при этом не изменилась (поскольку она вернулась к исходной массе). Испущенное излучение при этом совершенно не зависит от природы попавшего в неё тела. То есть чёрная дыра уничтожила попавшую в неё информацию, что математически выражается как неунитарность эволюции квантового состояния дыры и окружающих её полей.

В этой ситуации становится очевидным следующий парадокс. Если мы рассмотрим то же самое для падения и последующего испарения квантовой системы, находящейся в каком-либо чистом состоянии, то - поскольку чёрная дыра сама не изменилась - получим преобразование исходного чистого состояния в «тепловое» (смешанное) состояние. Такое преобразование, как уже было сказано, неунитарно, а вся квантовая механика строится на унитарных преобразованиях. Таким образом, эта ситуация противоречит исходным постулатам квантовой механики.

Разрешение этого противоречия - необходимый шаг на пути построения теории квантовой гравитации.

Излучением Хокинга называют гипотетический процесс испускания разнообразных элементарных частиц, преимущественно фотонов, чёрной дырой. Температуры известных астрономам чёрных дыр слишком малы, чтобы излучение Хокинга от них можно было бы зафиксировать - массы дыр слишком велики. Поэтому до сих пор эффект не подтверждён наблюдениями.

Согласно ОТО, при образовании Вселенной могли бы рождаться первичные чёрные дыры, некоторые из которых (с начальной массой 10в12 кг) должны были бы заканчивать испаряться в наше время. Так как интенсивность испарения растёт с уменьшением размера чёрной дыры, то последние стадии должны быть по сути взрывом чёрной дыры. Пока таких взрывов зарегистрировано не было.

Известно о попытке исследования «излучения Хокинга» на основе модели - аналога горизонта событий для белой дыры, в ходе физического эксперимента, проведенного исследователями из Миланского университета.

Испарение чёрной дыры - квантовый процесс. Дело в том, что понятие о чёрной дыре как объекте, который ничего не излучает, а может лишь поглощать материю, справедливо до тех пор, пока не учитываются квантовые эффекты. В квантовой же механике, благодаря туннелированию, появляется возможность преодолевать потенциальные барьеры, непреодолимые для неквантовой системы. Утверждение, что конечное состояние чёрной дыры стационарно, правильно лишь в рамках обычной, не квантовой теории тяготения. Квантовые эффекты ведут к тому, что на самом деле чёрная дыра должна непрерывно излучать, теряя при этом свою энергию. При этом температура и скорость излучения растут с потерей чёрной дырой своей массы, и финальные стадии процесса должны напоминать взрыв. Что останется от чёрной дыры в финале испарения, точно не известно. Возможно, остаётся планковская чёрная дыра минимальной массы, возможно, дыра испаряется полностью. Ответ на этот вопрос должна дать пока не разработанная квантовая теория гравитации.

Факт устойчивости вращающихся чёрных дыр (известных также как чёрные дыры Керра), накладывает ограничения на массу фотонов в некоторых теориях, являющихся расширениями Стандартной модели.

В 1966 году Марковым было высказано предположение о существовании элементарной частицы с экстремально большой массой - максимона. Более тяжелые частицы, длина волны де-Бройля которых меньше их гравитационного радиуса, возможно, являются квантовыми чёрными дырами. Так как все известные квантовые частицы имеют строго определённые возможные значения массы, то представляется, что и квантовые чёрные дыры тоже должны иметь дискретный спектр вполне определённых масс. Нахождением спектра масс квантовых чёрных дыр занимается квантовая теория гравитации.

Взаимодействие планковских чёрных дыр с элементарными частицами Планковская чёрная дыра - гипотетическая чёрная дыра с минимально возможной массой, которая равна планковской массе. Такой объект тождественен гипотетической элементарной частице с (предположительно) максимально возможной массой - максимону. Возможно, что планковская чёрная дыра является конечным продуктом эволюции обычных чёрных дыр, стабильна и больше не подвержена излучению Хокинга. Изучение взаимодействий таких объектов с элементарными частицами может пролить свет на различные аспекты квантовой гравитации и квантовой теории поля.

В физике чёрных дыр мембра́нная паради́гма является полезной моделью для визуализации и вычисления эффектов, предсказываемых общей теорией относительности, без прямого рассмотрения области, окружающей горизонт событий чёрной дыры. В этой модели чёрная дыра представляется как классическая излучающая поверхность (или мембрана), достаточно близкая к горизонту событий - растя́нутый горизо́нт. Этот подход к теории чёрных дыр был сформулирован в работах Дамура и независимо Знаека конца 1970-х-начала 1980-х и развит на основе метода 3 + 1-расщепления пространства-времени Кипом Торном, Ричардом Прайсом и Дугласом Макдональдом.

Аккрецией называют процесс падения вещества на космическое тело из окружающего пространства. При аккреции на чёрные дыры сверхгорячий аккреционный диск наблюдается как рентгеновский источник.

Нерешенные проблемы физики черных дыр:

Неизвестно доказательство принципа космической цензуры, а также точная формулировка условий, при которых он выполняется.
Неизвестно доказательство в общем случае “теоремы об отсутствии волос” у чёрной дыры.
Отсутствует полная и законченная теория магнитосферы черных дыр.
Неизвестна точная формула для вычисления числа различных состояний системы, коллапс которой приводит к возникновению черной дыры с заданными массой, моментом количества движения и зарядом.
Что остается после завершения процесса квантового распада черной дыры?

Черные дыры – пожалуй, самые таинственные и загадочные астрономические объекты в нашей Вселенной, с момента своего открытия привлекают внимание ученых мужей и будоражат фантазию писателей-фантастов. Что же такое черные дыры и что они из себя представляют? Черные дыры – это погаснувшие звезды, в силу своих физических особенностей, обладающие настолько высокой плотностью и настолько мощной гравитацией, что даже свету не удается вырваться за их пределы.

История открытия черных дыр

Впервые теоретическое существование черных дыр, еще задолго до их фактического открытия предположил некто Д. Мичел (английский священник из графства Йоркшир, на досуге увлекающийся астрономией) в далеком 1783 году. По его расчетам, если наше взять и сжать (говоря современным компьютерным языком — заархивировать) до радиуса в 3 км., образуется настолько большая (просто огромная) сила гравитации, что даже свет не сможет ее покинуть. Так и появилось понятие «черная дыра», хотя на самом деле она вовсе не черная, на наш взгляд более подходящим был бы термин «темная дыра», ведь имеет место именно отсутствие света.

Позже, в 1918 году о вопросе черных дыр в контексте теории относительности писал великий ученый Альберт Эйнштейн. Но только в 1967 году стараниями американского астрофизика Джона Уиллера понятие черных дыр окончательно завоевало место в академических кругах.

Как бы там ни было, и Д. Мичел, и Альберт Эйнштейн, и Джон Уиллер в своих работах предполагали только теоретическое существование этих загадочных небесных объектов в космическом пространстве, однако подлинное открытие черных дыр состоялось в 1971 году, именно тогда они впервые были замечены в телескоп.

Так выглядит черная дыра.

Как образуются черные дыры в космосе

Как мы знаем из астрофизики, все звезды (в том числе и наше Солнце) имеют некоторый ограниченный запас топлива. И хотя жизнь звезды может длиться миллиарды лет, рано или поздно этот условный запас топлива подходит к концу, и звезда «гаснет». Процесс «угасания» звезды сопровождается интенсивными реакциями, в ходе которых звезда проходит значительную трансформацию и в зависимости от своего размера может превратиться в белого карлика, нейтронную звезду или же черную дыру. Причем в черную дыру, обычно, превращаются самые крупные звезды, обладающие невероятно внушительными размерами – за счет сжимание этих самых невероятных размеров происходит многократное увеличение массы и силы гравитации новообразованной черной дыры, которая превращается в своеобразный галактический пылесос – поглощает все и вся вокруг себя.

Черная дыра поглощает звезду.

Маленькая ремарка – наше Солнце по галактическим меркам вовсе не является крупной звездой и после угасания, которое произойдет примерно через несколько миллиардов лет, в черную дыру, скорее всего, не превратиться.

Но будем с вами откровенны – на сегодняшний день, ученые пока еще не знают всех тонкостей образования черной дыры, несомненно, это чрезвычайно сложный астрофизический процесс, который сам по себе может длиться миллионы лет. Хотя возможно продвинуться в этом направлении могло бы обнаружение и последующее изучение так званых промежуточных черных дыр, то есть звезд, находящихся в состоянии угасания, у которых как раз происходит активный процесс формирования черной дыры. К слову, подобная звезда была обнаружена астрономами в 2014 году в рукаве спиральной галактики.

Сколько черных дыр существует во Вселенной

Согласно теориям современных ученых в нашей галактике Млечного пути может находиться до сотни миллионов черных дыр. Не меньшее их количество может быть и в соседней с нами галактике , до которой от нашего Млечного пути лететь всего нечего — 2,5 миллиона световых лет.

Теория черных дыр

Не смотря на огромную массу (которая в сотни тысяч раз превосходит массу нашего Солнца) и невероятной силы гравитацию увидеть черные дыры в телескоп было не просто, ведь они совсем не излучают света. Ученым удалось заметить черную дыру только в момент ее «трапезы» — поглощения другой звезды, в этот момент появляется характерное излучение, которое уже можно наблюдать. Таким образом, теория черной дыры нашла фактическое подтверждение.

Свойства черных дыр

Основное свойство черно дыры – это ее невероятные гравитационные поля, не позволяющие окружающему пространству и времени оставаться в своем привычном состоянии. Да, вы не ослышались, время внутри черной дыры протекает в разы медленнее чем обычно, и окажись вы там, то вернувшись обратно (если б вам так повезло, разумеется) с удивлением бы заметили, что на Земле прошли века, а вы даже состариться не успели. Хотя будем правдивы, окажись внутри черной дыры вы вряд ли бы выжили, так как сила гравитации там такая, что любой материальный объект просто разорвала бы даже не на части, на атомы.

А вот окажись вы даже поблизости черной дыры, в пределах действия ее гравитационного поля, то вам тоже пришлось бы не сладко, так как, чем сильнее вы бы сопротивлялись ее гравитации, пытаясь улететь подальше, тем быстрее бы упали в нее. Причинной этому казалось бы парадоксу является гравитационное вихревое поле, которым обладают все черные дыры.

Что если человек попадет в черную дыру

Испарение черных дыр

Английский астроном С. Хокинг открыл интересный факт: черные дыры также, оказывается, выделяют . Правда это касается только дыр сравнительно небольшой массы. Мощная гравитация около них рождает пары частиц и античастиц, один из пары втягивается дырой внутрь, а второй исторгается наружу. Таким образом, черная дыра излучает жесткие античастицы и гамма- . Это испарение или излучение черной дыры было названо на честь ученого, открывшего его – «излучение Хокинга».

Самая большая черная дыра

Согласно теории черных дыр в центре почти всех галактик находятся огромные черные дыры с массами от нескольких миллионов до нескольких миллиардом солнечных масс. И сравнительно недавно учеными были открыты две самые большие черные дыры, известные на сегодняшний момент, они находятся в двух близлежащих галактиках: NGC 3842 и NGC 4849.

NGC 3842 – самая яркая галактика в созвездии Льва, от нас находится на расстоянии 320 миллионов световых лет. В центре нее иметься огромная черная дыра массой в 9,7 миллиарда солнечных масс.

NGC 4849 – галактика в скопление Кома, на расстоянии 335 миллионов световых лет от нас может похвалится не менее внушительной черной дырой.

Зоны действия гравитационного поля этих гигантских черных дыр, или говоря академическим языком, их горизонт событий, примерно в 5 раз больше дистанции от Солнца до ! Такая черна дыра скушала бы нашу солнечную систему и даже не поперхнулась бы.

Самая маленькая черная дыра

Но есть в обширном семействе черных дыр и совсем маленькие представители. Так самая карликовая черная дыра, открытая учеными на настоящий момент по своей массе всего лишь в 3 раза превосходит массу нашего Солнца. По сути это теоретический минимум, необходимый для образования черной дыры, будь та звезда чуть меньше, дыра бы не образовалась.

Черные дыры — каннибалы

Да, есть такое явление, как мы писали выше, черные дыры являются своего рода «галактическими пылесосами», поглощающими все вокруг себя, и в том числе и… другие черные дыры. Недавно астрономами было обнаружено поедание черной дыры из одной галактике еще большой черной обжорой из другой галактики.

  • Согласно гипотезам некоторых ученых черные дыры являются не только галактическими пылесосами, всасывающими все в себя, но при определенных обстоятельствах могут и сами порождать новые вселенные.
  • Черные дыры могут испаряться со временем. Выше мы писали, что английским ученым Стивеном Хокингом было открыто, что черные дыры имеют свойство излучение и через какой-то очень большой отрезок времени, когда поглощать вокруг будет уже нечего, черная дыра начнет больше испарять, пока со временем не отдаст всю свой массу в окружающий космос. Хотя это только предположение, гипотеза.
  • Черные дыры замедляют время и искривляют пространство. О замедлении времени мы уже писали, но и пространство в условиях черной дыры будет совершенно искривлено.
  • Черные дыры ограничивают количество звезд во Вселенной. А именно их гравитационные поля препятствуют остыванию газовых облаков в космосе, из которых, как известно, рождаются новые звезды.

Черные дыры на канале Discovery, видео

И в завершение предлагаем вам интересный научно-документальный фильм о черных дырах от канала Discovery

«Мы можем с достаточной уверенностью говорить о том, что знаем историю Вселенной, начиная с первой секунды после Большого взрыва, – подчеркивает в одной из своих статей Хокинг. – Может, никакой особой точки и не было. Исходного материала <для Большого взрыва> тоже не требуется. Сильные гравитационные поля могут создавать материю». Роль одного из важных «инструментов» в этом гравитационном конструировании мироздания современная наука отводит, пожалуй, самым загадочным объектам Вселенной – черным дырам.

В цикле работ, выполненном Хокингом вместе со своим многолетним коллегой, профессором Роджером Пенроузом в 1965–1970 годах, было показано, что в черной дыре должна быть так называемая сингулярность – состояние пространственно-временного континуума, в котором плотность и кривизна этого самого пространства-времени становится бесконечной. Другими словами, масса и тяготение черной дыры настолько колоссальны, что даже луч света (а фотоны, как известно, самые быстрые частицы Вселенной) не в силах вырваться за пределы черной дыры, преодолеть ее тяготения. А это, в свою очередь, означает, что и мы, внешние наблюдатели, никакими способами не можем получить информацию о том, что же происходит в черной дыре. Она для нас становится как бы невидимой. Единственный способ хоть что-то узнать о черных дырах – наблюдать воздействие их гравитационного поля на другие космические тела.

И вот на днях, как сообщает агентство Би-би-си, Хокинг выдвинул новую теорию, которая кардинально меняет прежние наши представления о черных дырах. Выступая на научной конференции в Дублине, он заявил, что прежде ошибался, утверждая, что черные дыры уничтожают все, что в них попадает. Теперь Хокинг уверен: черные дыры способны «выпускать» информацию…

Тут необходимо вернуться в 1973 год. Именно тогда Хокинг выдвинул и теоретически обосновал одну из главных своих гипотез: черные дыры не такие уж и «черные», они могут испускать частицы. «Это происходит в рамках квантового процесса «рождения виртуальных пар», при котором частицы и античастицы постоянно создаются из вакуума – как правило, лишь на мгновение, чтобы тут же аннигилировать, исчезнув без следа, – пишет в своей знаменитой книге «Новый ум короля» Роджер Пенроуз. – Если есть черная дыра, она может «проглотить» одну из частиц такой пары до того, как произойдет аннигиляция, и вторая частица может покинуть черную дыру. Хокинговское излучение как раз и состоит из этих убежавших частиц».

В результате такого процесса черная дыра как бы испаряется, и в конечном счете возможно, что от ее первоначальной массы ничего не останется. Хокинг утверждает, что эта потеря невосполнима. Вернее, утверждал до самого последнего времени.

Теперь Хокинг пришел к мнению, что не все находящееся в пределах черной дыры навсегда теряется для остальной Вселенной. В соответствии все с теми же законами квантовой физики информация не может быть потеряна полностью, подчеркивает ученый.

«Я размышлял над этой проблемой 30 лет и теперь нашел ответ», – цитирует Стивена Хокинга агентство Би-би-си. – Мне жаль расстраивать поклонников научной фантастики. Но если вы упадете в черную дыру, энергия вашей массы вернется в нашу вселенную в измененной форме».

Другими словами, черные дыры все-таки не годятся в кандидаты для использования в качестве машины времени или как «ворота» в параллельные вселенные. «Излучение Хокинга» все-таки содержит информацию, и черная дыра, таким образом, не создает принципиальной проблемы для постижения прошлого и будущего.

Судя по всему, такой вывод действительно непросто дался выдающемуся физику нашего времени. Еще совсем недавно, в 1994 году, в лекции по общей теории относительности, прочитанной им в Институте математических наук имени Исаака Ньютона при Кембриджском университете, Стивен Хокинг подчеркивал: «Черные дыры, кажется, имеют внутреннюю энтропию и теряют информацию из нашей области вселенной. Я должен сказать, что эти требования весьма спорны: много ученых, работающих в области квантовой гравитации, включая почти всех тех, кто пришел в нее из физики элементарных частиц, инстинктивно отклоняют идею, что информация о состоянии квантовой системы может быть утеряна. Однако такая точка зрения не привела к большому успеху в объяснении того, каким образом информация может покидать черную дыру. В конечном счете я полагаю, что они будут вынуждены принять мое предложение, что информация безвозвратно теряется, так же как они были вынуждены согласиться, что черные дыры излучают, что противоречит всем их предубеждениям».

Как бы там ни было, но, несмотря на все эти теоретические «передряги», черные дыры как объекты Вселенной, не перестают потрясать воображение и ученых, и обывателей. Только один пример.

Известно, что минимальная скорость, необходимая для того, чтобы тело или излучение могли покинуть Солнце, – 620 км/с. Для Земли этот показатель – вторая космическая скорость – 11,19 км/с; для Юпитера – 62 км/с.

Если бы масса Солнца была сосредоточена в сфере радиусом в одну четверть от истинного значения, то в этом случае вторая космическая скорость увеличилась бы в два раза. Будь масса Солнца заключена в сфере радиусом в одну сотую от существующего, то вторая космическая скорость увеличилась бы в 10 раз (6200 км/с)! Продолжая эту мысленную процедуру «утрамбовывания» массы во все более маленькие объемы, мы можем представить себе тело столь малых размеров, что вторая космическая скорость для него превысит даже скорость света! Это-то и будет означать, что мы идентифицировали объект под названием черная дыра.

Но кроме того, и это, может быть, самое важное в теоретических построениях Хокинга, мы опять возвращаемся к «проклятому» вопросу космологии: есть ли место Богу в современной естественно-научной картине Вселенной? Наука, космология в данном случае, тем и хороша, что позволяет даже существование Бога сделать предметом своего анализа. Так, согласно оценкам Роджера Пенроуза, «для сотворения вселенной, близкой по своим свойствам к той, в которой мы живем, Творец ограничивает свой выбор исчезающе малым объемом в фазовом пространстве возможных вселенных – всего около 1/(1010)123 объема всего пространства». Чтобы представить ювелирную точность Творца в этом акте творения, достаточно сказать, что полученное число нельзя даже полностью записать в привычной нам десятичной системе исчисления: оно представляло бы собой «1» с последующими 10123 нулями. Даже если бы мы были в состоянии записать «0» на каждом протоне и нейтроне во Вселенной, мало того – использовать для записи все остальные частицы Универсума, наше число осталось бы все равно недописанным…

Поэтому можно только поражаться и восхищаться той смелостью и определенностью, с которой дает ответ на вопрос, есть ли место Богу в современной естественно-научной картине Вселенной, человек, прикованный большую часть своей сознательной жизни к инвалидному креслу – Стивен Хокинг.

БК Леон является ведущим онлайн-букмекером на гемблинговом рынке. Компания повышенное внимание уделяет бесперебойной работе сервиса. Также постоянно совершенствуется функционал портала. Для удобства пользователей создано зеркало Леон.

Перейти на зеркало

Что такое зеркало Леон.

Для получения доступа к официальному порталу БК Leon, необходимо воспользоваться зеркалом. Пользователю рабочее зеркало предоставляет множество преимуществ таких, как:

  • разнообразная линейка спортивных мероприятий, которые имеют высокие коэффициенты;
  • предоставление возможности игры в режиме Live, смотреть матчи будет интересным занятием;
  • подробный материал относительно проведенных соревнований;
  • удобный интерфейс, с которым быстро разберется даже неопытный пользователь.

Рабочее зеркало представляет собой копию официального портала. Он имеет идентичную функциональность и синхронную базу данных. За счет этого данные учетной записи не меняются. Разработчиками предусмотрена возможность блокировки рабочего зеркала, на такой случай предоставляется иное. Данные точные копии рассылаются и контролируются сотрудниками БК Леон. Если воспользоваться функционирующим зеркалом, то можно получить доступ к официальному порталу БК Леон.

Пользователю не составит трудностей найти зеркало, так как их список подлежит обновлению. При закрытом доступе от посетителя сайта требуется выполнить установку приложения Леон для мобильного телефона на компьютер. Также нужно поменять IP на иную страну за счет VPN. Для изменения местоположения пользователя или провайдера нужно воспользоваться TOP-браузером.

Разработчики предусмотрели различные возможности пользования зеркалом. Для этого с правой стороны сайта имеется надпись “Доступ к сайту”, зеленая кнопка “Обход блокировок” позволяет игроку зайти в подменю и добавить универсальную закладку в браузер.

Также удобство пользователю предоставляет мобильное приложение. Если необходимо узнать о новом адресе зеркала портала, можно позвонить по бесплатному телефону. Получать доступ к зеркалу позволяет канал @leonbets_official на Telegram . Приложение Leonacsess для Windows позволяет всегда получить доступ к сайту. Данные способы дают возможность получить игроку доступ к рабочему зеркалу.

Почему заблокировали основной сайт Леон

Это происходит вследствие действий службы Роскомнадзора. Это связано с отсутствием лицензии на ведение букмекерской деятельности. Синий Leon не получил лицензию, чтобы игрок не платил с выигрыша 13%.

Как зарегистрироваться на зеркале Леонбетс

Зарегистрироваться на этом сайте значительно проще, чем официально. Пользователю не требуется регистрироваться на двух порталах, что занимает до двух дней. Если отдать предпочтение рабочему зеркалу, то данная процедура будет максимально простой.

Для этого пользователю понадобится только заполнить данные относительно Ф. И. О., контакты. Также необходимо определиться с валютой, указать дату рождения и домашний адрес. Также нужно подписаться на рассылку сообщений. Это позволит оперативно получать информацию от букмекеров. Зарегистрированный пользователь получает возможность иметь доступ к личному кабинету, что позволяет произвести ставку на матчи, мероприятия. При возникновении сложностей можно обратиться в службу технической поддержки.

Беседка