Магнетизм для чайников: основные формулы, определение, примеры. Сущность магнетизма Магнитное поле и магнетизм физика

Еще за тысячу лет до первых наблюдений электрических явлений, человечество уже начало накапливать знания о магнетизме . И всего четыреста лет тому назад, когда становление физики как науки только началось, исследователи отделили магнитные свойства веществ от их электрических свойств, и только после этого начали изучать их самостоятельно. Так было положено экспериментальное и теоретическое начало, ставшее к середине 19 века фундаментом единой теории электрических и магнитных явлений .

Похоже, что необычные свойства магнитного железняка были известны еще в период бронзового века в Месопотамии. А после начала развития железной металлургии люди заметили, что он притягивает изделия из железа. О причинах этого притяжения задумывался и древнегреческий философ и математик Фалес из города Милет (640−546 гг. до н. э.), он объяснял это притяжение одушевленностью минерала.

Греческие мыслители представляли, как невидимые пары окутывают магнетит и железо, как эти пары влекут вещества друг к другу. Слово «магнит» могло произойти он названия города Магнесии-у-Сипила в Малой Азии, недалеко от которого залегал магнетит. Одна из легенд рассказывает, что пастух Магнис как-то оказался со своими овцами рядом со скалой, которая притянула к себе железный наконечник его посоха и сапоги.

В древнекитайском трактате «Весенние и осенние записи мастера Лю» (240 г. до н. э.) упоминается свойство магнетита притягивать к себе железо. Через сто лет китайцы отметили, что магнетит не притягивает ни медь, ни керамику. В 7-8 веках они заметили, что намагниченная железная игла, будучи свободно подвешена, поворачивается по направлению к Полярной звезде.

Так ко второй половине 11 века в Китае начали изготавливать морские компасы, которые европейские мореплаватели освоили лишь через сто лет после китайцев. Тогда китайцы уже обнаружили способность намагниченной иглы отклоняться в направлении восточнее северного, и открыли таким образом магнитное склонение, опередив в этом европейских мореплавателей, пришедших к точно такому выводу только в 15 столетии.

В Европе первым свойства природных магнитов описал философ из Франции Пьер де Марикур, который в 1269 году пребывал на службе в армии сицилийского короля Карла Анжуйского. В период осады одного из итальянских городов, он отправил другу в Пикардию документ, вошедший в историю науки под названием «Письмо о магните», где и рассказал о своих экспериментах с магнитным железняком.

Марикур отметил, что в любом куске магнетита есть две области, которые особенно сильно притягивают к себе железо. Он заметил в этом сходство с полюсами небесной сферы, поэтому позаимствовал их названия для обозначения областей максимума магнитной силы. Оттуда и пошла традиция называть полюса магнитов южным и северным магнитными полюсами.

Марикур писал, что если разбить любой кусок магнетита на две части, то в каждом осколке появятся собственные полюса.

Марикур впервые связал эффект отталкивания и притяжения магнитных полюсов с взаимодействием разноименных (южного и северного), либо одноименных полюсов. Марикур по праву считается пионером европейской экспериментальной научной школы, его заметки о магнетизме воспроизводились в десятках списков, а с появлением книгопечатания издавались в форме брошюры. Их цитировали многие ученые натуралисты вплоть до 17 столетия.

С трудом Марикура был хорошо знаком и английский естествоиспытатель, ученый и врач Уильям Гильберт. В 1600 году он опубликовал труд «О магните, магнитных телах и большом магните - Земле». В этом труде Гильберт привел все известные на тот момент сведения о свойствах природных магнитных материалов и намагниченного железа, а также описал свои собственные опыты с магнитным шаром, в которых воспроизвел модель земного магнетизма.

В частности он опытным путем установил, что на обоих полюсах «маленькой Земли» стрелка компаса поворачивается перпендикулярно ее поверхности, у экватора устанавливается параллельно, а на средних широтах - поворачивается в промежуточное положение. Таким образом Гильберту удалось смоделировать магнитное наклонение, о котором в Европе знали более 50 лет (в 1544 году его описал Георг Хартман, механик из Нюрнберга).

Гильберт воспроизвел также геомагнитное склонение, которое он приписал не идеально гладкой поверхности шара, а в масштабе планеты объяснил этот эффект притяжением между континентами. Он обнаружил, как сильно разогретое железо теряет свои магнитные свойства, а при охлаждении - восстанавливает их. Наконец, Гильберт первым четко различил притяжение магнита и притяжение янтаря, натертого шерстью, которое назвал электрической силой. Это был поистине новаторский труд, оцененный как современниками, так и потомками. Гильберт открыл, что Землю будет правильным считать «большим магнитом».

До самого начала XIX века наука о магнетизме продвинулась очень немного. В 1640 году Бенедетто Кастелли, ученик Галилея, объяснил притяжение магнетита множеством очень маленьких магнитных частиц, входящих в его состав.

В 1778 году Себальд Бругманс, уроженец Голландии, заметил, как висмут и сурьма отталкивали полюса магнитной стрелки, что стало первым примером физического феномена, который позже Фарадей назовет диамагнетизмом .

Шарль-Огюстен Кулон в 1785 году, посредством точных измерений на крутильных весах, доказал, что сила взаимодействия магнитных полюсов между собой обратно пропорциональна квадрату расстояния между полюсами - так же точно, как и сила взаимодействия электрических зарядов.

С 1813 года датский физик Эрстед усердно пытался экспериментально установить связь электричества с магнетизмом. В качестве индикаторов исследователь использовал компасы, но долго не мог достичь цели, ведь он ожидал, что магнитная сила параллельна току, и располагал электрический провод под прямым углом к стрелке компаса. Стрелка никак не реагировала на возникновение тока.

Весной 1820 года, во время одной из лекций, Эрстед натянул провод параллельно стрелке, причем не ясно, что привело его к этой идее. И вот стрелка качнулась. Эрстед почему-то прекратил эксперименты на несколько месяцев, после чего вернулся к ним и понял, что «магнитное воздействие электрического тока направлено по окружностям, охватывающим этот ток».

Вывод был парадоксальным, ведь раньше вращающиеся силы не проявляли себя ни в механике, ни где-либо еще в физике. Эрстед написал статью, где изложил свои выводы, и больше электромагнетизмом так и не занимался.

Осенью того же года француз Андре-Мари Ампер приступил к опытам. Перво-наперво повторив и подтвердив результаты и выводы Эрстеда, в начале октября он обнаружил притяжение проводников, если токи в них направлены одинаково, и отталкивание, если токи противоположны.

Ампер изучил также взаимодействие между непараллельными проводниками с током, после чего описал его формулой, названой позже законом Ампера. Ученый показал и то, что свернутые в спираль провода с током поворачиваются под действием магнитного поля, как это происходит со стрелкой компаса.

Наконец, он выдвинул гипотезу о молекулярных токах, согласно которой внутри намагниченных материалов имеют место непрерывные микроскопические параллельные друг другу круговые токи, служащие причиной магнитного действия материалов.

В то же время Био и Савар совместно вывели математическую формулу, позволяющую вычислять интенсивность магнитного поля постоянного тока.

И вот, к концу 1821 года Майкл Фарадей, уже работавший в Лондоне, изготовил устройство, в котором проводник с током вращался вокруг магнита, а другой магнит поворачивался вокруг другого проводника.

Фарадей выдвинул предположение, что и магнит, и провод окутаны концентрическими силовыми линиями, которые и обуславливают их механическое воздействие.

Со временем Фарадей уверился в физической реальности силовых магнитных линий. К концу 1830-х ученый уже четко осознавал, что энергия как постоянных магнитов, так и проводников с током, распределена в окружающем их пространстве, которое заполнено силовыми магнитными линиями. В августе 1831 года исследователю удалось заставить магнетизм производить генерацию электрического тока.

Устройство состояло из железного кольца с расположенными на нем двумя противоположными обмотками. Первую обмотку можно было замыкать на электрическую батарею, а вторая соединялась с проводником, помещенным над стрелкой магнитного компаса. Когда по проводу первой катушки тек постоянный ток, стрелка не меняла своего положения, но начинала качаться в моменты его выключения и включения.

Фарадей пришел к заключению, что в эти моменты в проводе второй обмотки возникали электрические импульсы, связанные с исчезновением или возникновением магнитных силовых линий. Он сделал открытие, что причиной возникающей электродвижущей силы является изменение магнитного поля.

В ноябре 1857 года Фарадей написал письмо в Шотландию профессору Максвеллу с просьбой придать математическую форму знаниям об электромагнетизме. Максвелл просьбу выполнил. Понятие электромагнитного поля нашло место в 1864 году в его мемуарах.

Максвелл ввел термин «поле» для обозначения части пространства, которая окружает и содержит тела, пребывающие в магнитном или электрическом состоянии, причем он особо подчеркнул, что само это пространство может быть и пустым и заполненным совершенно любым видом материи, а поле все равно будет иметь место.

В 1873 году Максвелл издал «Трактат об электричестве и магнетизме», где представил систему уравнений, объединяющих электромагнитные явления. Он дал им название общих уравнений электромагнитного поля, и по сей день они зовутся уравнениями Максвелла. По теории Максвелла магнетизм - это взаимодействие особого рода между электрическими токами . Это фундамент, на котором построены все теоретические и экспериментальные работы, относящиеся к магнетизму.

Содержит теоретический материал по разделу «Магнетизм» дисциплины «Физика».

Предназначен для оказания помощи студентам технических специальностей всех форм обучения в самостоятельной работе, а также при подготовке к упражнениям, коллоквиумам и экзаменам.

© Андреев А.Д., Черных Л.М., 2009

 Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А.Бонч-Бруевича», 2009

ВВЕДЕНИЕ

В 1820 г. профессор университета в Копенгагене Ганс Христиан Эрстед читал лекции по электричеству, гальванизму и магнетизму. В то время электричеством называли электростатику, гальванизмом назывались явления, вызываемые постоянным током, получаемым от батарей, магнетизм был связан с известными свойствами железных руд, со стрелкой компаса, с магнитным полем Земли.

В поисках связи между гальванизмом и магнетизмом Эрстед проделал опыт с пропусканием тока через проволоку, подвешенную над стрелкой компаса. При включении тока стрелка отклонялась в сторону от меридионального направления. Если изменялось направление тока или стрелка помещалась над током, она отклонялась в другую сторону от меридиана.

Открытие Эрстеда явилось мощным стимулом для дальнейших исследований и открытий. Прошло немного времени и Ампер, Фарадей и другие провели полное и точное исследование магнитного действия электрических токов. Открытие Фарадеем явления электромагнитной индукции произошло через 12 лет после опыта Эрстеда. На основе этих экспериментальных открытий была построена классическая теория электромагнетизма. Максвелл придал ей окончательный вид и математическую форму, а Герц в 1888 г. блестяще подтвердил, экспериментально доказав существование электромагнитных волн .

1. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ

1.1. Взаимодействие токов. Магнитная индукция

Электрические токи взаимодействуют между собой. Как показывает опыт, два прямолинейных параллельных проводника, по которым текут токи, притягиваются, если токи в них имеют одинаковое направление, и отталкиваются, если токи противоположны по направлению (рис. 1). При этом сила их взаимодействия на единицу длины проводника прямо пропорциональна силе тока в каждом из проводников и обратно пропорциональна расстоянию между ними. Закон взаимодействия токов был установлен Андре Мари Ампером в 1820 г. экспериментально.

В металлах суммарный заряд положительно заряженной ионной решетки и отрицательно заряженных свободных электронов равен нулю. Заряды распределены в проводнике равномерно. Таким образом, электрическое поле вокруг проводника отсутствует. Именно поэтому проводники при отсутствии тока не взаимодействуют друг с другом.

Однако при наличии тока (упорядоченного движения свободных носителей заряда) между проводниками возникает взаимодействие, которое принято называть магнитным.

В современной физике магнитное взаимодействие токов трактуется как релятивистский эффект, возникающий в системе отсчета, относительно которой имеет место упорядоченное движение зарядов . В данном пособии будем использовать понятие магнитного поля как свойство пространства, окружающего электрический ток. Существование магнитного поля тока проявляется при взаимодействии с другими проводниками с током (закон Ампера), или при взаимодействии с движущейся заряженной частицей (сила Лоренца, подразд. 2.1), или при отклонении магнитной стрелки, помещенной вблизи проводника с током (опыт Эрстеда).

Для характеристики магнитного поля тока введем понятие вектора магнитной индукции. Для этого, аналогично тому как при определении характеристик электростатического поля использовалось понятие пробного точечного заряда , при введении вектора магнитной индукции будем использовать пробный контур с током. Пусть это будет плоский замкнутый контур произвольной формы и малых размеров. Настолько малых, что в точках места его расположения магнитное поле можно считать одинаковым. Ориентацию контура в пространстве будем характеризовать вектором нормали к контуру, связанным с направлением тока в нем правилом правого винта (буравчика): при вращении ручки буравчика в направлении тока (рис. 2) поступательное движение кончика буравчика определяет направление единичного вектора нормали к плоскости контура.

Характеристикой пробного контура является его магнитный момент , где s – площадь пробного контура.

Если поместить пробный контур с током в выбранную точку рядом с прямым током, то токи будут взаимодействовать. При этом на пробный контур с током будет действовать вращательный момент пары сил М (рис. 3). Величина этого момента, как показывает опыт, зависит от свойств поля в данной точке (контур мал по размеру) и от свойств контура (его магнитного момента).

На рис. 4, представляющем собой сечение рис. 3 горизонтальной плоскостью, показаны несколько положений пробного контура с током в магнитном поле прямого тока I . Точка в кружке обозначает направление тока к наблюдателю. Крест обозначает направление тока за рисунок. Положение 1 соответствует устойчивому равновесию контура (М = 0), когда силы растягивают его. Положение 2 соответствует неустойчивому равновесию (М = 0). В положении 3 на пробный контур с током действует максимальный вращающий момент сил. В зависимости от ориентации контура величина вращающего момента может принимать любые значения от нуля до максимального . Как показывает опыт, в любой точке , т. е. максимальное значение механического момента пары сил зависит от величины магнитного момента пробного контура и не может служить характеристикой магнитного поля в исследуемой точке. Отношение максимального механического момента пары сил к магнитному моменту пробного контура не зависит от последнего и может служить характеристикой магнитного поля. Эта характеристика называется магнитной индукцией (индукцией магнитного поля)

Введем ее как векторную величину. За направление вектора магнитной индукции будем принимать направление магнитного момента пробного контура с током, помещенного в исследуемую точку поля, в положении устойчивого равновесия (положение 1 на рис. 4). Это направление совпадает с направлением северного конца магнитной стрелки, помещенной в эту точку. Из сказанного следует, что характеризует силовое действие магнитного поля на ток и, следовательно, является аналогом напряженности поля в электростатике. Поле вектора можно представить при помощи линий магнитной индукции. В каждой точке линии вектор направлен по касательной к ней. Так как вектор магнитной индукции в любой точке поля имеет определенное направление, то и направление линии магнитной индукции – единственное в каждой точке поля. Следовательно, линии магнитной индукции, так же как и силовые линии электрического поля, не пересекаются. На рис. 5 представлено несколько линий индукции магнитного поля прямого тока, изображенных в плоскости, перпендикулярной току. Они имеют вид замкнутых окружностей с центрами на оси тока.

Следует отметить, что линии индукции магнитного поля всегда замкнуты. Это отличительная черта вихревого поля, в котором поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю (теорема Гаусса в магнетизме).

1.2. Закон Био–Савара–Лапласа.
Принцип суперпозиции в магнетизме

Био и Савар провели в 1820 г. исследование магнитных полей токов различной формы. Они установили, что магнитная индукция во всех случаях пропорциональна силе тока, создающего магнитное поле. Лаплас проанализировал экспериментальные данные, полученные Био и Саваром, и нашел, что магнитное поле тока I любой конфигурации может быть вычислено как векторная сумма (суперпозиция) полей, создаваемых отдельными элементарными участками тока.

Длина каждого участка тока настолько мала, что его можно считать прямым отрезком, расстояние от которого до точки наблюдения много больше . Удобно ввести понятие элемента тока где направление вектора совпадает с направлением тока I , а его модуль равен (рис. 6).

Для индукции магнитного поля , создаваемого элементом тока в точке, находящейся на расстоянии r от него (рис. 6), Лаплас вывел формулу, справедливую для вакуума:

. (1.1)

Формула закона Био–Савара–Лапласа (1.1) написана в системе СИ, в которой постоянная называется магнитной постоянной.

Уже отмечалось, что в магнетизме, как и в электричестве, имеет место принцип суперпозиции полей, т. е. индукция магнитного поля, создаваемого системой токов, в данной точке пространства равна векторной сумме индукций магнитных полей, создаваемых в этой точке каждым из токов в отдельности :

На рис. 7 приведен пример построения вектора магнитной индукции в поле двух параллельных и противоположных по направлению токов и :

1.3. Применение закона Био–Савара–Лапласа.
Магнитное поле прямого тока

Рассмотрим отрезок прямого тока. Элемент тока создает магнитное поле, индукция которого в точке А (рис. 8) по закону Био–Савара–Лапласа находится по формуле:

, (1.3)

Заряженные тела способны создавать кроме электрического еще один вид поля. Если заряды движутся, то в пространстве вокруг них создается особый вид материи, называемый магнитным полем . Следовательно, электрический ток, представляющий собой упорядоченное движение зарядов, тоже создает магнитное поле. Как и электрическое поле, магнитное поле не ограничено в пространстве, распространяется очень быстро, но все же с конечной скоростью. Его можно обнаружить только по действию на движущиеся заряженные тела (и, как следствие, токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности E электрического поля. Такой характеристикой является вектор B магнитной индукции. В системе единиц СИ за единицу магнитной индукции принят 1 Тесла (Тл). Если в магнитное поле с индукцией B поместить проводник длиной l с током I , то на него будет действовать сила, называемая силой Ампера , которая вычисляется по формуле:

где: В – индукция магнитного поля, I – сила тока в проводнике, l – его длина. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.

Для определения направления силы Ампера обычно используют правило «Левой руки» : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы Ампера, действующей на проводник (см. рисунок).

Если угол α между направлениями вектора магнитной индукции и тока в проводнике отличен от 90°, то для определения направления силы Ампера надо взять составляющую магнитного поля, которая перпендикулярна направлению тока. Решать задачи этой темы нужно так же как и в динамике или статике, т.е. расписав силы по осям координат или складывая силы по правилам сложения векторов.

Момент сил, действующих на рамку с током

Пусть рамка с током находится в магнитном поле, причём плоскость рамки перпендикулярна полю. Силы Ампера будут сжимать рамку, а их равнодействующая будет равна нулю. Если поменять направление тока, то силы Ампера поменяют своё направление, и рамка будет не сжиматься, а растягиваться. Если линии магнитной индукции лежат в плоскости рамки, то возникает вращательный момент сил Ампера. Вращательный момент сил Ампера равен:

где: S - площадь рамки, α - угол между нормалью к рамке и вектором магнитной индукции (нормаль - вектор, перпендикулярный плоскости рамки), N – количество витков, B – индукция магнитного поля, I – сила тока в рамке.

Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B может быть выражена через силы, действующие на отдельные носители заряда. Эти силы называют силами Лоренца . Сила Лоренца, действующая на частицу с зарядом q в магнитном поле B , двигающуюся со скоростью v , вычисляется по следующей формуле:

Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика (как и сила Ампера). Вектор магнитной индукции нужно мысленно воткнуть в ладонь левой руки, четыре сомкнутых пальца направить по скорости движения заряженной частицы, а отогнутый большой палец покажет направление силы Лоренца. Если частица имеет отрицательный заряд, то направление силы Лоренца, найденное по правилу левой руки, надо будет заменить на противоположное.

Сила Лоренца направлена перпендикулярно векторам скорости и индукции магнитного поля. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает . Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору индукции магнитного поля, то частица будет двигаться по окружности, радиус которой можно вычислить по следующей формуле:

Сила Лоренца в этом случае играет роль центростремительной силы. Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что для заряженных частиц заданной массы m период обращения (а значит и частота, и угловая скорость) не зависит от скорости (следовательно, и от кинетической энергии) и радиуса траектории R .

Теория о магнитном поле

Если по двум параллельным проводам идёт ток в одном направлении, то они притягиваются; если в противоположных направлениях, то отталкиваются. Закономерности этого явления были экспериментально установлены Ампером. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I 1 и I 2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

где: μ 0 – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно:

μ 0 = 4π ·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Сравнивая приведенное только что выражение для силы взаимодействия двух проводников с током и выражение для силы Ампера нетрудно получить выражение для индукции магнитного поля создаваемого каждым из прямолинейных проводников с током на расстоянии R от него:

где: μ – магнитная проницаемость вещества (об этом чуть ниже). Если ток протекает по круговому витку, то в центре витка индукция магнитного поля определяется по формуле:

Силовыми линиями магнитного поля называют линии, по касательным к которым располагаются магнитные стрелки. Магнитной стрелкой называют длинный и тонкий магнит, его полюса точечны. Подвешенная на нити магнитная стрелка всегда поворачивается в одну сторону. При этом один её конец направлен в сторону севера, второй - на юг. Отсюда название полюсов: северный (N ) и южный (S ). Магниты всегда имеют два полюса: северный (обозначается синим цветом или буквой N ) и южный (красным цветом или буквой S ). Магниты взаимодействуют так же, как и заряды: одноименные полюса отталкиваются, а разноименные – притягиваются. Невозможно получить магнит с одним полюсом. Даже если магнит разломать, то у каждой части будет по два разных полюса.

Вектор магнитной индукции

Вектор магнитной индукции - векторная физическая величина, являющаяся характеристикой магнитного поля, численно равная силе, действующей на элемент тока в 1 А и длиной 1 м, если направление силовой линии перпендикулярно проводнику. Обозначается В , единица измерения - 1 Тесла. 1 Тл - очень большая величина, поэтому в реальных магнитных полях магнитную индукцию измеряют в мТл.

Вектор магнитной индукции направлен по касательной к силовым линиям, т.е. совпадает с направлением северного полюса магнитной стрелки, помещённой в данное магнитное поле. Направление вектора магнитной индукции не совпадает с направлением силы, действующей на проводник, поэтому силовые линии магнитного поля, строго говоря, силовыми не являются.

Силовая линия магнитного поля постоянных магнитов направлена по отношению к самим магнитам так, как показано на рисунке:

В случае магнитного поля электрического тока для определения направления силовых линий используют правило «Правой руки» : если взять проводник в правую руку так, чтобы большой палец был направлен по току, то четыре пальца, обхватывающие проводник, показывают направление силовых линий вокруг проводника:

В случае прямого тока линии магнитной индукции - окружности, плоскости которых перпендикулярны току. Вектора магнитной индукции направлены по касательной к окружности.

Соленоид - намотанный на цилиндрическую поверхность проводник, по которому течёт электрический ток I подобно полю прямого постоянного магнита. Внутри соленоида длиной l и количеством витков N создается однородное магнитное поле с индукцией (его направление также определяется правилом правой руки):

Линии магнитного поля имеют вид замкнутых линий - это общее свойство всех магнитных линий. Такое поле называют вихревым. В случае постоянных магнитов линии не оканчиваются на поверхности, а проникают внутрь магнита и замыкаются внутри. Это различие электрического и магнитного полей объясняется тем, что, в отличие от электрических, магнитных зарядов не существует.

Магнитные свойства вещества

Все вещества обладают магнитными свойствами. Магнитные свойства вещества характеризуются относительной магнитной проницаемостью μ , для которой верно следующее:

Данная формула выражает соответствие вектора магнитной индукции поля в вакууме и в данной среде. В отличие от электрического, при магнитном взаимодействии в среде можно наблюдать и усиление, и ослабление взаимодействия по сравнению с вакуумом, у которого магнитная проницаемость μ = 1. У диамагнетиков магнитная проницаемость μ немного меньше единицы. Примеры: вода, азот, серебро, медь, золото. Эти вещества несколько ослабляют магнитное поле. Парамагнетики - кислород, платина, магний - несколько усиливают поле, имея μ немного больше единицы. У ферромагнетиков - железо, никель, кобальт - μ >> 1. Например, у железа μ ≈ 25000.

Магнитный поток. Электромагнитная индукция

Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 году. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину:

где: B – модуль вектора магнитной индукции, α – угол между вектором магнитной индукции B и нормалью (перпендикуляром) к плоскости контура, S – площадь контура, N – количество витком в контуре. Единица магнитного потока в системе СИ называется Вебером (Вб).

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ε инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум возможным причинам.

  1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
  2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре.

При решении задач важно сразу определить за счет чего меняется магнитный поток. Возможно три варианта:

  1. Меняется магнитное поле.
  2. Меняется площадь контура.
  3. Меняется ориентация рамки относительно поля.

При этом при решении задач обычно считают ЭДС по модулю. Обратим внимание также внимание на один частный случай, в котором происходит явление электромагнитной индукции. Итак, максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Движение проводника в магнитном поле

При движении проводника длиной l в магнитном поле B со скоростью v на его концах возникает разность потенциалов, вызванная действием силы Лоренца на свободные электроны в проводнике. Эту разность потенциалов (строго говоря, ЭДС) находят по формуле:

где: α - угол, который измеряется между направлением скорости и вектора магнитной индукции. В неподвижных частях контура ЭДС не возникает.

Если стержень длиной L вращается в магнитном поле В вокруг одного из своих концов с угловой скоростью ω , то на его концах возникнет разность потенциалов (ЭДС), которую можно рассчитать по формуле:

Индуктивность. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ , пронизывающий контур или катушку с током, пропорционален силе тока I :

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн).

Запомните: индуктивность контура не зависит ни от магнитного потока, ни от силы тока в нем, а определяется только формой и размерами контура, а также свойствами окружающей среды. Поэтому при изменении силы тока в контуре индуктивность остается неизменной. Индуктивность катушки можно рассчитать по формуле:

где: n - концентрация витков на единицу длины катушки:

ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна:

Итак ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Энергия W м магнитного поля катушки с индуктивностью L , создаваемого током I , может быть рассчитана по одной из формул (они следуют друг из друга с учётом формулы Φ = LI ):

Соотнеся формулу для энергии магнитного поля катушки с её геометрическими размерами можно получить формулу для объемной плотности энергии магнитного поля (или энергии единицы объёма):

Правило Ленца

Инерция – явление, происходящее и в механике (при разгоне автомобиля мы отклоняемся назад, противодействуя увеличению скорости, а при торможении отклоняемся вперёд, противодействуя уменьшению скорости), и в молекулярной физике (при нагревании жидкости увеличивается скорость испарения, самые быстрые молекулы покидают жидкость, уменьшая скорость нагревания) и так далее. В электромагнетизме инерция проявляется в противодействии изменению магнитного потока, пронизывающего контур. Если магнитный поток нарастает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать нарастанию магнитного потока, а если магнитный поток убывает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать убыванию магнитного потока.

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между такими зарядами, было отмечено еще во времена Гомера. Слово «электричество» происходит от греческого °lektron (янтарь), поскольку первые описанные в истории наблюдения электризации трением связаны именно с этим материалом. В 1733 Ш.Дюфе (1698–1739) открыл, что существуют электрические заряды двух типов. Заряды одного типа образуются на сургуче, если его натирать шерстяной тканью, заряды другого типа – на стекле, если его натирать шелком. Одинаковые заряды отталкиваются, разные – притягиваются. Заряды разных типов, соединяясь, нейтрализуют друг друга. В 1750 Б.Франклин (1706–1790) разработал теорию электрических явлений, основанную на предположении, что все материалы содержат некую «электрическую жидкость». Он полагал, что при трении двух материалов друг о друга часть этой электрической жидкости переходит с одного из них на другой (при этом общее количество электрической жидкости сохраняется). Избыток электрической жидкости в теле сообщает ему заряд одного типа, а ее недостаток проявляется как наличие заряда другого типа. Франклин решил, что при натирании сургуча шерстяной тканью шерсть отнимает у него некоторое количество электрической жидкости. Поэтому он назвал заряд сургуча отрицательным.

    Взгляды Франклина очень близки современным представлениям, согласно которым электризация трением объясняется перетеканием электронов с одного из трущихся тел на другое. Но поскольку в действительности электроны перетекают с шерсти на сургуч, в сургуче возникает избыток, а не недостаток этой электрической жидкости, которая теперь отождествляется с электронами. У Франклина не было способа определить, в каком направлении перетекает электрическая жидкость, и его неудачному выбору мы обязаны тем, что заряды электронов оказались «отрицательными». Хотя такой знак заряда вызывает некоторую путаницу у приступающих к изучению предмета, эта условность слишком прочно укоренилась в литературе, чтобы говорить об изменении знака заряда у электрона после того, как его свойства уже хорошо изучены.

    С помощью крутильных весов, разработанных Г.Кавендишем (1731–1810), в 1785 Ш.Кулон (1736–1806) показал, что сила, действующая между двумя точечными электрическими зарядами, пропорциональна произведению величин этих зарядов и обратно пропорциональна квадрату расстояния между ними, а именно:

    где F – сила, с которой заряд q отталкивает заряд того же знака q ў, а r – расстояние между ними. Если знаки зарядов противоположны, то сила F отрицательна и заряды не отталкивают, а притягивают друг друга. Коэффициент пропорциональности K зависит от того, в каких единицах измеряются F , r , q и q ў.

    Единицы измерения заряда первоначально не существовало, но закон Кулона дает возможность ввести такую единицу. Этой единице измерения электрического заряда присвоено название «кулон» и сокращенное обозначение Кл. Один кулон (1 Кл) представляет собой заряд, который остается на первоначально электрически нейтральном теле после удаления с него 6,242Ч10 18 электронов.

    Если в формуле (1) заряды q и q ў выражены в кулонах, F – в ньютонах, а r – в метрах, то K » 8,9876Ч10 9 HЧм 2 /Кл 2 , т.е. примерно 9Ч10 9 НЧм 2 /Кл 2 . Обычно вместо K используют константу e 0 = 1/4pK . Хотя при этом выражение для закона Кулона немного усложняется, это позволяет обходиться без множителя 4p в других формулах, которые применяются чаще закона Кулона.

    Электростатические машины и лейденская банка.

    Машину для получения статического заряда большой величины путем трения изобрел примерно в 1660 О.Герике (1602–1686), описавший ее в книге Новые опыты о пустом пространстве (De vacuo spatio , 1672). Вскоре появились другие варианты такой машины. В 1745 Э.Клейст из Каммина и независимо от него П.Мушенбрук из Лейдена обнаружили, что стеклянную посудину, выложенную изнутри и снаружи проводящим материалом, можно использовать для накопления и хранения электрического заряда. Стеклянные банки, выложенные изнутри и снаружи оловянной фольгой – так называемые лейденские банки – были первыми электрическими конденсаторами. Франклин показал, что при зарядке лейденской банки наружное покрытие из оловянной фольги (наружная обкладка) приобретает заряд одного знака, а внутренняя обкладка – равный по величине заряд противоположного знака. Если обе заряженные обкладки приводятся в соприкосновение или соединяются проводником, то заряды полностью исчезают, что свидетельствует об их взаимной нейтрализации. Отсюда следует, что заряды свободно перемещаются по металлу, но не могут перемещаться по стеклу. Материалы типа металлов, по которым заряды передвигаются свободно, были названы проводниками, а материалы типа стекла, через которые заряды не проходят, – изоляторами (диэлектриками).

    Диэлектрики.

    Идеальный диэлектрик – это материал, внутренние электрические заряды которого связаны настолько прочно, что он не способен проводить электрический ток. Поэтому он может служить хорошим изолятором. Хотя идеальных диэлектриков в природе не существует, проводимость многих изоляционных материалов при комнатной температуре не превышает 10 –23 проводимости меди; во многих случаях такую проводимость можно считать равной нулю.

    Проводники.

    Кристаллическая структура и распределение электронов в твердых проводниках и диэлектриках сходны между собой. Основное различие заключается в том, что в диэлектрике все электроны прочно связаны с соответствующими ядрами, тогда как в проводнике имеются электроны, находящиеся во внешней оболочке атомов, которые могут свободно перемещаться по кристаллу. Такие электроны называют свободными электронами или электронами проводимости, поскольку они являются переносчиками электрического заряда. Число электронов проводимости, приходящихся на один атом металла, зависит от электронной структуры атомов и степени возмущения внешних электронных оболочек атома его соседями по кристаллической решетке. У элементов первой группы периодической системы элементов (лития, натрия, калия, меди, рубидия, серебра, цезия и золота) внутренние электронные оболочки заполнены целиком, а во внешней оболочке имеется один-единственный электрон. Эксперимент подтвердил, что у этих металлов приходящееся на один атом число электронов проводимости приблизительно равно единице. Однако для большинства металлов других групп характерны в среднем дробные значения числа электронов проводимости в расчете на один атом. Например, у переходных элементов – никеля, кобальта, палладия, рения и большинства их сплавов – число электронов проводимости на один атом равно примерно 0,6. Число носителей тока в полупроводниках гораздо меньше. Например, в германии при комнатной температуре оно порядка 10 –9 . Чрезвычайно малое число носителей в полупроводниках приводит к возникновению у них множества интересных свойств. См . ФИЗИКА ТВЕРДОГО ТЕЛА; ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ; ТРАНЗИСТОР.

    Тепловые колебания кристаллической решетки в металле поддерживают постоянное движение электронов проводимости, скорость которых при комнатной температуре достигает 10 6 м/с. Поскольку это движение хаотично, оно не приводит к возникновению электрического тока. При наложении же электрического поля появляется небольшой общий дрейф. Этот дрейф свободных электронов в проводнике и представляет собой электрический ток. Поскольку электроны заряжены отрицательно, направление тока противоположно направлению их дрейфа.

    Разность потенциалов.

    Для описания свойств конденсатора необходимо ввести понятие разности потенциалов. Если на одной обкладке конденсатора имеется положительный заряд, а на другой – отрицательный заряд той же величины, то для переноса дополнительной порции положительного заряда с отрицательной обкладки на положительную необходимо совершить работу против сил притяжения со стороны отрицательных зарядов и отталкивания положительных. Разность потенциалов между обкладками определяется как отношение работы по переносу пробного заряда к величине этого заряда; при этом предполагается, что пробный заряд значительно меньше заряда, находившегося первоначально на каждой из обкладок. Несколько видоизменив формулировку, можно дать определение разности потенциалов между любыми двумя точками, которые могут находиться где угодно: на проводе с током, на разных обкладках конденсатора либо просто в пространстве. Это определение таково: разность потенциалов между двумя точками пространства равна отношению работы, затрачиваемой на перемещение пробного заряда из точки с более низким потенциалом в точку с более высоким потенциалом, к величине пробного заряда. Снова предполагается, что пробный заряд достаточно мал и не нарушает распределения зарядов, создающих измеряемую разность потенциалов. Разность потенциалов V измеряется в вольтах (В) при условии, что работа W выражена в джоулях (Дж), а пробный заряд q – в кулонах (Кл).

    Емкость.

    Емкость конденсатора равна отношению абсолютной величины заряда на любой из двух его обкладок (напомним, что их заряды различаются только знаком) к разности потенциалов между обкладками:

    Емкость C измеряется в фарадах (Ф), если заряд Q выражен в кулонах (Кл), а разность потенциалов – в вольтах (В). Две только что упомянутые единицы измерения, вольт и фарада, названы так в честь ученых А.Вольты и М.Фарадея.

    Фарада оказалась настолько крупной единицей, что емкость большинства конденсаторов выражают в микрофарадах (10 –6 Ф) или пикофарадах (10 –12 Ф).

    Электрическое поле.

    Вблизи электрических зарядов существует электрическое поле, величина которого в данной точке пространства равна, по определению, отношению силы, действующей на точечный пробный заряд, помещенный в эту точку, к величине пробного заряда, опять-таки при условии, что пробный заряд достаточно мал и не изменяет распределения зарядов, создающих поле. Согласно этому определению, действующая на заряд q сила F и напряженность электрического поля E связаны соотношением

    Фарадей ввел представление о силовых линиях электрического поля, начинающихся на положительных и оканчивающихся на отрицательных зарядах. При этом плотность (густота) силовых линий пропорциональна напряженности поля, а направление поля в данной точке совпадает с направлением касательной к силовой линии. Позднее К.Гаусс (1777–1855) подтвердил справедливость этой догадки. Исходя из установленного Кулоном закона обратных квадратов (1), он математически строго показал, что силовые линии, если их строить в соответствии с представлениями Фарадея, непрерывны повсюду в пустом пространстве, начинаясь на положительных зарядах и заканчиваясь на отрицательных. Это обобщение получило наименование теоремы Гаусса. Если полное число силовых линий, выходящих из каждого заряда Q , равно Q /e 0, то плотность линий в любой точке (т.е. отношение числа линий, пересекающих воображаемую площадку малого размера, помещенную в эту точку перпендикулярно им, к площади этой площадки) равна величине напряженности электрического поля в этой точке, выраженной либо в Н/Кл, либо в В/м.

    Простейший конденсатор представляет собой две параллельные проводящие пластины, расположенные близко друг к другу. При зарядке конденсатора пластины приобретают одинаковые, но противоположные по знаку заряды, равномерно распределенные по каждой из пластин, за исключением краев. Согласно теореме Гаусса, напряженность поля между такими пластинами постоянна и равна E = Q /e 0A , где Q – заряд на положительно заряженной пластине, а А – площадь пластины. В силу определения разности потенциалов имеем , где d – расстояние между пластинами. Таким образом, V = Qd /e 0A , и емкость такого плоскопараллельного конденсатора равна:

    где C выражается в фарадах, а A и d , соответственно, в м 2 и м.

    ПОСТОЯННЫЙ ТОК

    В 1780 Л.Гальвани (1737–1798) заметил, что заряд, подводимый от электростатической машины к лапке мертвой лягушки, заставляет лапку резко дергаться. Более того, лапки лягушки, закрепленной над железной пластинкой на латунной проволочке, введенной в ее спинной мозг, дергались всякий раз, как только касались пластинки. Гальвани правильно объяснил это тем, что электрические заряды, проходя по нервным волокнам, заставляют мышцы лягушки сокращаться. Это движение зарядов было названо гальваническим током.

    После опытов, проводившихся Гальвани, Вольта (1745–1827) изобрел так называемый вольтов столб – гальваническую батарею из нескольких последовательно соединенных электрохимических элементов. Его батарея состояла из чередовавшихся медных и цинковых кружочков, разделенных влажной бумагой, и позволяла наблюдать те же явления, что и электростатическая машина.

    Повторяя опыты Вольты, Никольсон и Карлейль в 1800 обнаружили, что посредством электрического тока можно нанести медь из раствора сульфата меди на медный проводник. У.Волластон (1766–1828) получил такие же результаты с помощью электростатической машины. М.Фарадей (1791–1867) показал в 1833, что масса элемента, получаемого с помощью электролиза, производимого данным количеством заряда, пропорциональна его атомной массе, деленной на валентность. Это положение ныне называют законом Фарадея для электролиза.

    Поскольку электрический ток представляет собой перенос электрических зарядов, естественно определить единицу силы тока как заряд в кулонах, который ежесекундно проходит через данную площадку. Сила тока 1 Кл/с была названа ампером в честь А.Ампера (1775–1836), открывшего многие важные эффекты, связанные с действием электрического тока.

    Закон Ома, сопротивление и удельное сопротивление.

    В 1826 Г.Ом (1787–1854) сообщил о новом открытии: ток в металлическом проводнике при введении в цепь каждой дополнительной секции вольтова столба возрастал на одну и ту же величину. Это было обобщено в виде закона Ома. Поскольку создаваемая вольтовым столбом разность потенциалов пропорциональна числу включенных секций, этот закон утверждает, что разность потенциалов V между двумя точками проводника, деленная на силу тока I в проводнике, постоянна и не зависит от V или I . Отношение

    называется сопротивлением проводника на участке между двумя точками. Сопротивление измеряется в омах (Ом), если разность потенциалов V выражена в вольтах, а сила тока I – в амперах. Сопротивление металлического проводника пропорционально его длине l и обратно пропорционально площади А его поперечного сечения. Оно остается постоянным, пока постоянна его температура. Обычно эти положения выражают формулой

    где r – удельное сопротивление (ОмЧм), зависящее от материала проводника и его температуры. Температурный коэффициент удельного сопротивления определяется как относительное изменение величины r при изменении температуры на один градус. В таблице приведены значения удельных сопротивлений и температурных коэффициентов сопротивления некоторых обычных материалов, измеренные при комнатной температуре. Удельные сопротивления чистых металлов, как правило, ниже, чем у сплавов, а температурные коэффициенты – выше. Удельное сопротивление диэлектриков, особенно серы и слюды, намного выше, чем металлов; отношение достигает величины 10 23 . Температурные коэффициенты диэлектриков и полупроводников отрицательны и имеют относительно большие значения.

    УДЕЛЬНЫЕ СОПРОТИВЛЕНИЯ И ТЕМПЕРАТУРНЫЕ КОЭФФИЦИЕНТЫ ОБЫЧНЫХ МАТЕРИАЛОВ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ

    Элемент

    Удельное сопротивление,
    ОмЧм

    Температурный коэффициент, 1/° С

    Серебро
    Золото
    Медь
    Алюминий
    Вольфрам
    Никель
    Углерод
    Сера
    Сплав или соединение

    Удельное сопротивление,
    ОмЧм

    Температурный коэффициент, 1/°С

    Константан
    45 Ni–55 Cu
    Нихром Ni–Cr–Fe
    Бакелит
    Стекло
    Слюда

    Тепловое действие электрического тока.

    Тепловое действие электрического тока впервые наблюдалось в 1801, когда током удалось расплавить различные металлы. Первое промышленное применение этого явления относится к 1808, когда был предложен электрозапал для пороха. Первая угольная дуга, предназначенная для обогрева и освещения, была выставлена в Париже в 1802. К полюсам вольтова столба, насчитывавшего 120 элементов, подсоединялись электроды из древесного угля, и когда оба угольных электрода приводились в соприкосновение, а затем разводились, возникал «сверкающий разряд исключительной яркости».

    Исследуя тепловое действие электрического тока, Дж.Джоуль (1818–1889) провел эксперимент, который подвел прочную основу под закон сохранения энергии. Джоуль впервые показал, что химическая энергия, которая расходуется на поддержание в проводнике тока, приблизительно равна тому количеству тепла, которое выделяется в проводнике при прохождении тока. Он установил также, что выделяющееся в проводнике тепло пропорционально квадрату силы тока. Это наблюдение согласуется как с законом Ома (V = IR ), так и с определением разности потенциалов (V = W /q ). В случае постоянного тока за время t через проводник проходит заряд q = It . Следовательно, электрическая энергия, превратившаяся в проводнике в тепло, равна:

    Эта энергия называется джоулевым теплом и выражается в джоулях (Дж), если ток I выражен в амперах, R – в омах, а t – в секундах.

    Источники электрической энергии для цепей постоянного тока.

    При протекании по цепи постоянного электрического тока происходит столь же постоянное превращение электрической энергии в тепло. Для поддержания тока необходимо, чтобы на некоторых участках цепи вырабатывалась электрическая энергия. Вольтов столб и другие химические источники тока преобразуют химическую энергию в электрическую. В последующих разделах обсуждаются и другие устройства, вырабатывающие электрическую энергию. Все они действуют наподобие электрических «насосов», перемещающих электрические заряды против действия сил, содаваемых постоянным электрическим полем.

    Важным параметром источника тока является электродвижущая сила (ЭДС). ЭДС источника тока определяется как разность потенциалов на его зажимах в отсутствие тока (при разомкнутой внешней цепи) и измеряется в вольтах.

    Термоэлектричество.

    В 1822 Т.Зеебек обнаружил, что в цепи, составленной из двух разных металлов, возникает ток, если одна точка их соединения горячее другой. Подобная цепь называется термоэлементом. В 1834 Ж.Пельтье установил, что при прохождении тока через спай двух металлов в одном направлении тепло поглощается, а в другом – выделяется. Величина этого обратимого эффекта зависит от материалов спая и его температуры. Каждый спай термоэлемента обладает ЭДС ej = W j /q , где W j – тепловая энергия, превращающаяся в электрическую при одном направлении перемещения заряда q , или электрическая энергия, превращающаяся в тепло при перемещении заряда в другом направлении. Эти ЭДС противоположны по направлению, но обычно не равны одна другой, если температуры спаев различаются.

    У.Томсон (1824–1907) установил, что полная ЭДС термоэлемента складывается не из двух, а из четырех ЭДС. В дополнение к ЭДС, возникающим в спаях, имеются две дополнительные ЭДС, обусловленные перепадом температуры на проводниках, образующих термоэлемент. Им было дано название ЭДС Томсона.

    Эффекты Зеебека и Пельтье.

    Термоэлемент представляет собой «тепловую машину», в определенном отношении сходную с генератором тока, приводимым в действие паровой турбиной, но без движущихся частей. Подобно турбогенератору, он превращает тепло в электроэнергию, отбирая его от «нагревателя» с более высокой температурой и отдавая часть этого тепла «холодильнику» с более низкой температурой. В термоэлементе, действующем подобно тепловой машине, «нагреватель» находится у горячего спая, а «холодильник» – у холодного. То обстоятельство, что тепло с более низкой температурой теряется, ограничивает теоретический кпд преобразования тепловой энергии в электрическую значением (T 1 – T 2)/T 1 где T 1 и T 2 – абсолютные температуры «нагревателя» и «холодильника». Дополнительное снижение кпд термоэлемента обусловлено потерей тепла за счет теплопередачи от «нагревателя» к «холодильнику». См . ТЕПЛОТА; ТЕРМОДИНАМИКА.

    Преобразование тепла в электрическую энергию, происходящее в термоэлементе, обычно называют эффектом Зеебека. Термоэлементы, называемые термопарами, применяют для измерения температуры, особенно в труднодоступных местах. Если один спай находится в контролируемой точке, а другой – при комнатной температуре, которая известна, то термо-ЭДС служит мерой температуры в контролируемой точке. Большие успехи достигнуты в области применения термоэлементов для прямого преобразования тепла в электроэнергию в промышленных масштабах.

    Если через термоэлемент пропускать ток от внешнего источника, то холодный спай будет поглощать тепло, а горячий – выделять его. Такое явление называется эффектом Пельтье. Этот эффект можно использовать либо для охлаждения с помощью холодных спаев, либо для обогрева горячими спаями. Тепловая энергия, выделяемая горячим спаем, больше полного количества тепла, подведенного к холодному спаю, на величину, соответствующую подведенной электрической энергии. Таким образом, горячий спай выделяет больше тепла, чем соответствовало бы полному количеству электрической энергии, подведенной к устройству. В принципе большое число последовательно соединенных термоэлементов, холодные спаи которых выведены наружу, а горячие находятся внутри помещения, можно использовать в качестве теплового насоса, перекачивающего тепло из области с более низкой температурой в область с более высокой температурой. Теоретически выигрыш в тепловой энергии по сравнению с затратами электрической энергии может составлять T 1 /(T 1 – T 2).

    К сожалению, для большинства материалов эффект настолько мал, что на практике потребовалось бы слишком много термоэлементов. Кроме того, применимость эффекта Пельтье несколько ограничивает теплопередача от горячего спая к холодному за счет теплопроводности в случае металлических материалов. Исследования полупроводников привели к созданию материалов с достаточно большими эффектами Пельтье для ряда практических применений. Эффект Пельтье оказывается особенно ценным при необходимости охлаждать труднодоступные участки, где непригодны обычные способы охлаждения. С помощью таких устройств охлаждают, например, приборы в космических кораблях.

    Электрохимические эффекты.

    В 1842 Г.Гельмгольц продемонстрировал, что в источнике тока типа вольтова столба химическая энергия превращается в электрическую, а в процессе электролиза электрическая энергия превращается в химическую. Химические источники тока типа сухих элементов (обычных батареек) и аккумуляторов оказались чрезвычайно практичными. При зарядке аккумуляторной батареи электрическим током оптимальной величины бóльшая часть сообщенной ей электрической энергии превращается в химическую энергию, которая может быть использована при разрядке аккумулятора. И при зарядке, и при разрядке аккумулятора часть энергии теряется в виде тепла; эти тепловые потери обусловлены внутренним сопротивлением аккумулятора. ЭДС такого источника тока равна разности потенциалов на его зажимах в условиях разомкнутой цепи, когда отсутствует падение напряжения IR на внутреннем сопротивлении.

    Цепи постоянного тока.

    Для расчета силы постоянного тока в простой цепи можно использовать закон, открытый Омом при исследовании вольтова столба:

    где R – сопротивление цепи и V – ЭДС источника.

    Если несколько резисторов с сопротивлениями R 1 , R 2 и т.д. соединены последовательно, то в каждом из них ток I одинаков и полная разность потенциалов равна сумме отдельных разностей потенциалов (рис. 1,а ). Общее сопротивление можно определить как сопротивление R s последовательного соединения группы резисторов. Разность потенциалов на этой группе равна

    Если резисторы соединены параллельно, то разность потенциалов на группе совпадает с разностью потенциалов на каждом отдельном резисторе (рис. 1,б ). Полный ток через группу резисторов равен сумме токов через отдельные резисторы, т.е.

    Поскольку I 1 = V /R 1 , I 2 = V /R 2 , I 3 = V /R 3 и т.д., сопротивление параллельного соединения группы R p определяется соотношением

    При решении задач с цепями постоянного тока любого типа нужно сначала по возможности упростить задачу, пользуясь соотношениями (9) и (10).

    Законы Кирхгофа.

    Г.Кирхгоф (1824–1887) детально исследовал закон Ома и разработал общий метод расчета постоянных токов в электрических цепях, в том числе содержащих несколько источников ЭДС. Этот метод основан на двух правилах, называемых законами Кирхгофа:

    1. Алгебраическая сумма всех токов в любом узле цепи равна нулю.

    2. Алгебраическая сумма всех разностей потенциалов IR в любом замкнутом контуре равна алгебраической сумме всех ЭДС в этом замкнутом контуре.

    МАГНИТОСТАТИКА

    Магнитостатика имеет дело с силами, возникающими между телами с постоянным намагничением.

    О свойствах природных магнитов сообщается в трудах Фалеса Милетского (прибл. 600 до н.э.) и Платона (427–347 до н.э.). Слово «магнит» возникло в связи с тем, что природные магниты были обнаружены греками в Магнесии (Фессалия). К 11 в. относится сообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природных магнитов и использовании их в навигации. Если длинная игла из природного магнита уравновешена на оси, позволяющей ей свободно поворачиваться в горизонтальной плоскости, то она всегда обращена одним концом к северу, а другим – к югу. Пометив указывающий на север конец, можно пользоваться таким компасом для определения направлений. Магнитные эффекты концентрировались у концов такой иглы, и поэтому их назвали полюсами (соответственно северным и южным).

    Сочинение У.Гильберта О магните (De magnete , 1600) явилось первой известной нам попыткой исследования магнитных явлений с позиций науки. В этом труде собраны имевшиеся тогда сведения об электричестве и магнетизме, а также результаты собственных экспериментов автора.

    Стержни из железа, стали и некоторых других материалов намагничиваются при соприкосновении с природными магнитами, а их способность притягивать небольшие кусочки железа, как и у природных магнитов, обычно проявляется вблизи полюсов, располагающихся у концов стержней. Подобно электрическим зарядам, полюса бывают двух типов. Одинаковые полюса взаимно отталкиваются, а противоположные – притягиваются. Каждый магнит имеет два одинаковых по силе полюса противоположного знака. В отличие от электрических зарядов, которые можно отделить друг от друга, пары полюсов оказались неразделимы. Если намагниченный стержень аккуратно распилить посередине между полюсами, то появляются два новых полюса той же силы. Поскольку электрические заряды не влияют на магнитные полюса и наоборот, электрические и магнитные явления долгое время считались совершенно разными по своей природе.

    Кулон установил закон для сил притяжения и отталкивания полюсов, воспользовавшись весами, похожими на те, что он применял, выясняя закон для сил, действующих между двумя точечными зарядами. Оказалось, что сила, действующая между точечными полюсами, пропорциональна их «величине» и обратно пропорциональна квадрату расстояния между ними. Этот закон записывается в виде

    где p и p ў – «величины» полюсов, r – расстояние между ними, а K m – коэффициент пропорциональности, который зависит от используемых единиц измерения. В современной физике от рассмотрения величин магнитных полюсов отказались (по причинам, которые объясняются в следующем разделе), так что этот закон представляет в основном исторический интерес.

    МАГНИТНЫЕ ЭФФЕКТЫ ЭЛЕКТРИЧЕСКОГО ТОКА

    В 1820 Г.Эрстед (1777–1851) обнаружил, что проводник с током воздействует на магнитную стрелку, поворачивая ее. Буквально неделей позже Ампер показал, что два параллельных проводника с током одного направления притягиваются друг к другу. Позднее он высказал предположение, что все магнитные явления обусловлены токами, причем магнитные свойства постоянных магнитов связаны с токами, постоянно циркулирующими внутри этих магнитов. Это предположение полностью соответствует современным представлениям. См. МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА.

    Электрические поля, создаваемые электрическими зарядами в окружающем пространстве, характеризуются силой, действующей на единичный пробный заряд. Вокруг намагниченных материалов и проводников с электрическим током возникают магнитные поля, которые первоначально характеризовали силой, действующей на «единичный» пробный полюс. Хотя такой способ определения напряженности магнитного поля теперь не применяется, этот подход сохранился при определении направления магнитного поля. Если маленькая магнитная стрелка подвешена в своем центре масс и может свободно вращаться в любом направлении, то ее ориентация и будет указывать направление магнитного поля.

    От использования магнитных полюсов для определения характеристик магнитных полей пришлось отказаться по ряду причин: во-первых, нельзя изолировать отдельный полюс; во-вторых, ни положение, ни величину полюса нельзя точно определить; в-третьих, магнитные полюса – по существу, фиктивные понятия, поскольку на самом деле магнитные эффекты обусловлены движением электрических зарядов. Соответственно этому магнитные поля теперь характеризуют силой, с которой они действуют на проводники с током. На рис. 2 изображен проводник с током I , лежащий в плоскости рисунка; направление тока I указано стрелкой. Проводник находится в однородном магнитном поле, направление которого параллельно плоскости рисунка и составляет угол f с направлением проводника с током. Величина индукции магнитного поля B дается выражением

    где F – сила, с которой поле b действует на элемент проводника длиной l с током I . Направление силы F перпендикулярно как направлению магнитного поля, так и направлению тока. На рис. 2 эта сила перпендикулярна плоскости рисунка и направлена от читателя. Величину B в принципе можно определить, поворачивая проводник, пока F не достигнет максимального значения, при котором B = F макс /Il . Направление магнитного поля тоже можно установить, поворачивая проводник, пока сила F не обратится в нуль, т.е. проводник окажется параллельным B . Хотя эти правила трудно применять на практике, экспериментальные методы определения величины и направления магнитных полей основаны на них. Силу, действующую на проводник с током, обычно записывают в виде

    Ж.Био (1774–1862) и Ф.Савар (1791–1841) вывели закон, позволяющий вычислять магнитное поле, создаваемое известным распределением электрических токов, а именно

    где B – магнитная индукция, создаваемая элементом проводника малой длины l с током I . Направление магнитного поля, создаваемого этим элементом тока, показано на рис. 3, где поясняются также величины r и f . Коэффициент пропорциональности k зависит от выбора единиц измерения. Если I выражается в амперах, l и r – в метрах, а B – в теслах (Тл), то k = m 0/4p = 10 –7 Гн/м. Для определения величины и направления B в любой точке пространства, которое создает проводник большой длины и произвольной формы, следует мысленно разбить проводник на короткие отрезки, вычислить величины b и определить направление полей, создаваемых отдельными отрезками, а затем векторно сложить эти отдельные поля. Например, если ток I в проводнике, образующем окружность радиусом a , направлен по часовой стрелке, то поле в центре окружности легко вычисляется. В формуле (13) расстояние r от каждого элемента проводника до центра окружности равно a и f = 90°. Кроме того, поле, создаваемое каждым элементом, перпендикулярно плоскости окружности и направлено от читателя. Сложив все поля, получим магнитную индукцию в центре:

    Чтобы найти поле вблизи проводника, создаваемое очень длинным прямолинейным проводником с током I , для суммирования полей потребуется прибегнуть к интегрированию. Найденное таким способом поле равно:

    где r – расстояние по перпендикуляру от проводника. Это выражение используется в принятом в настоящее время определении ампера.

    Гальванометры.

    Соотношение (12) позволяет сравнивать силы электрических токов. Созданный для этой цели прибор носит название гальванометра. Первый такой прибор был построен И.Швайгером в 1820. Он представлял собой катушку провода, внутри которой подвешена магнитная стрелка. Измеряемый ток пропускался через катушку и создавал вокруг стрелки магнитное поле. На стрелку действовал вращающий момент, пропорциональный силе тока, который уравновешивался за счет упругости нити подвеса. Магнитное поле Земли вносит искажения, однако его влияние можно исключить, окружив стрелку постоянными магнитами. В 1858 У.Томсон, более известный как лорд Кельвин, прикрепил к стрелке зеркальце и ввел ряд других усовершенствований, значительно повысивших чувствительность гальванометра. Подобные гальванометры относятся к классу приборов с подвижной стрелкой.

    Хотя гальванометр с подвижной стрелкой можно сделать чрезвычайно чувствительным, его почти полностью вытеснил прибор с подвижной катушкой или рамкой, помещенной между полюсами постоянного магнита. Магнитное поле большого подковообразного магнита в гальванометре оказывается столь сильным по сравнению с магнитным полем Земли, что влиянием последнего можно пренебречь (рис. 4). Гальванометр с подвижной рамкой был предложен в 1836 У.Стердженом (1783–1850), но не получил должного признания, пока в 1882 Ж.Д"Арсонваль не создал современный вариант этого прибора.

    Электромагнитная индукция.

    После того как Эрстед установил, что постоянный ток создает вращающий момент, действующий на магнит, делалось множество попыток обнаружить ток, вызванный присутствием магнитов. Однако магниты были слишком слабыми, а методы измерения тока – слишком грубыми для обнаружения какого-либо эффекта. Наконец, два исследователя – Дж.Генри (1797–1878) в Америке и М.Фарадей (1791–1867) в Англии – в 1831 независимо друг от друга обнаружили, что при изменении магнитного поля в находящихся рядом проводящих цепях возникают кратковременные токи, но эффект отсутствует, если магнитное поле остается постоянным.

    Фарадей считал, что не только электрические, но и магнитные поля – это силовые линии, заполняющие пространство. Числу силовых линий магнитного поля, пересекающих произвольную поверхность s , соответствует величина F, которая называется магнитным потоком:

    где B n – проекция магнитного поля B на нормаль к элементу площади ds . Единица измерения магнитного потока называется вебером (Вб); 1 Вб = 1 ТлЧм 2 .

    Фарадеем был сформулирован закон об ЭДС, наводимой в замкнутом витке провода изменяющимся магнитным полем (закон магнитной индукции). Согласно этому закону, такая ЭДС пропорциональна скорости изменения полного магнитного потока через виток. В системе единиц СИ коэффициент пропорциональности равен 1 и, таким образом, ЭДС (в вольтах) равна скорости изменения магнитного потока (в Вб/с). Математически это выражается формулой

    где знак минус показывает, что магнитные поля токов, создаваемых этой ЭДС, направлены так, что уменьшают изменение магнитного потока. Это правило для определения направления наводимой ЭДС согласуется с более общим правилом, сформулированным в 1833 Э.Ленцем (1804–1865): наведенная ЭДС направлена так, что противодействует вызывающей ее появление причине. В случае замкнутой цепи, в которой возникает ток, это правило можно вывести непосредственно из закона сохранения энергии; этим правилом определяется направление наводимой ЭДС и в случае разомкнутой цепи, когда индукционный ток не возникает.

    Если катушка состоит из N витков провода, каждый из которых пронизывается магнитным потоком F, то

    Это соотношение справедливо независимо от того, по какой причине изменяется пронизывающий цепь магнитный поток.

    Генераторы.

    Принцип действия электромашинного генератора показан на рис. 5. Прямоугольный виток провода вращается против часовой стрелки в магнитном поле между полюсами магнита. Концы витка выведены наружу к контактным кольцам и подключены к внешней цепи через контактные щетки. Когда плоскость витка перпендикулярна полю, пронизывающий петлю магнитный поток максимален. Если же плоскость витка параллельна полю, то магнитный поток равен нулю. Когда плоскость витка снова оказывается перпендикулярной полю, повернувшись на 180°, магнитный поток через виток максимален в противоположном направлении. Таким образом, при вращении витка пронизывающий его магнитный поток непрерывно меняется и в соответствии с законом Фарадея меняется напряжение на зажимах.

    Чтобы проанализировать, что происходит в простом генераторе переменного тока, будем считать магнитный поток положительным, когда угол q находится в интервале от 0° до 180°, и отрицательным, когда q составляет от 180° до 360°. Если B – индукция магнитного поля и A – площадь витка, то магнитный поток через виток будет равен:

    Если виток вращается с частотой f об./с (т.е. 2pf рад/с), то спустя время t с момента начала вращения, когда q было равно 0, получим q = 2pft рад. Таким образом, выражение для потока через виток приобретает вид

    Согласно закону Фарадея, наводимое напряжение получается дифференцированием потока:

    Знаки у щеток на рисунке показывают полярность наводимого напряжения в соответствующий момент. Косинус изменяется от +1 до -1, так что величина 2pfAB есть просто амплитуда напряжения; можно обозначить ее через и записать

    (При этом мы опустили знак «минус», заменив его соответствующим выбором полярности выводов генератора на рис 5.) На рис. 6 представлен график изменения напряжения по времени.

    Напряжение, вырабатываемое описанным простым генератором, периодически меняет свое направление на обратное; то же относится к токам, создаваемым в электрических цепях этим напряжением. Такой генератор называют генератором переменного тока.

    Ток, всегда сохраняющий одно и то же направление, называется постоянным. В некоторых случаях, например для зарядки аккумуляторов, необходим такой ток. Можно двумя способами получать постоянный ток из переменного. Один состоит в том, что во внешнюю цепь включают выпрямитель, пропускающий ток только в одном направлении. Это позволяет как бы выключать генератор на один полупериод и включать его только в тот полупериод, когда напряжение имеет нужную полярность. Другой способ – переключать контакты, соединяющие виток с внешней цепью, через каждый полупериод, когда напряжение меняет полярность. Тогда ток во внешней цепи всегда будет направлен в одну сторону, хотя напряжение, наводимое в витке, меняет свою полярность. Переключение контактов осуществляется с помощью коллекторных полуколец, установленных вместо токосъемных колец, как показано на рис. 7,а . Когда плоскость витка вертикальна, скорость изменения магнитного потока и, следовательно, наводимое напряжение падают до нуля. Именно в этот момент щетки проскальзывают над зазором, разделяющим два полукольца, и происходит переключение внешней цепи. Напряжение, возникающее во внешней цепи, изменяется так, как показано на рис. 7,б .

    Взаимная индукция.

    Если две замкнутые катушки провода расположены рядом, но электрически не связаны друг с другом, то при изменении тока в одной из них в другой наводится ЭДС. Поскольку магнитный поток через вторую катушку пропорционален току в первой катушке, изменение этого тока влечет за собой изменение магнитного потока с наведением соответствующей ЭДС. Катушки можно поменять ролями, и тогда при изменении тока во второй катушке будет наводиться ЭДС в первой. ЭДС, наводимая в одной катушке, определяется скоростью изменения тока в другой и зависит от размеров и числа витков каждой катушки, а также от расстояния между катушками и их ориентации одна относительно другой. Эти зависимости сравнительно просты, если поблизости не располагаются магнитные материалы. Отношение ЭДС, наведенной в одной катушке, к скорости изменения тока в другой называется коэффициентом взаимоиндукции двух катушек, отвечающей их данному расположению. Если наведенная ЭДС выражается в вольтах, а скорость изменения тока – в амперах за секунду (А/с), то взаимоиндукция будет выражена в генри (Гн). ЭДС, наводимые в катушках, даются следующими формулами:

    где M – коэффициент взаимоиндукции двух катушек. Катушку, подключенную к источнику тока, принято называть первичной катушкой или обмоткой, а другую – вторичной. Постоянный ток в первичной обмотке не создает напряжения во вторичной, хотя в момент включения и выключения тока во вторичной обмотке кратковременно возникает ЭДС. Но если к первичной обмотке подключается ЭДС, создающая в этой обмотке переменный ток, то переменная ЭДС наводится и во вторичной обмотке. Таким образом, вторичная обмотка может питать переменным током активную нагрузку или другие схемы без прямого подключения их к источнику ЭДС.

    Трансформаторы.

    Взаимоиндукцию двух обмоток можно значительно увеличить, намотав их на общий сердечник из ферромагнитного материала, такого, как железо. Подобное устройство называется трансформатором. В современных трансформаторах ферромагнитный сердечник образует замкнутую магнитную цепь, так что почти весь магнитный поток проходит внутри сердечника и, следовательно, через обе обмотки. Источник переменной ЭДС, подключенный к первичной обмотке, создает в железном сердечнике переменный магнитный поток. Этот поток наводит переменные ЭДС и в первичной, и во вторичной обмотках, причем максимальные значения каждой ЭДС пропорциональны числу витков в соответствующей обмотке. В хороших трансформаторах сопротивление обмоток настолько мало, что ЭДС, наведенная в первичной обмотке, почти совпадает с приложенным напряжением, а разность потенциалов на выводах вторичной обмотки почти совпадает с наведенной в ней ЭДС.

    Таким образом, отношение падения напряжения на нагрузке вторичной обмотки к напряжению, приложенному к первичной обмотке, равно отношению чисел витков во вторичной и первичной обмотках, что обычно записывают в виде равенства

    где V 1 – падение напряжения на N 1 витках первичной обмотки, а V 2 – падение напряжения на N 2 витках вторичной обмотки. В зависимости от соотношения чисел витков в первичной и вторичной обмотках различают повышающие и понижающие трансформаторы. Отношение N 2 /N 1 больше единицы в повышающих трансформаторах и меньше единицы в понижающих. Благодаря трансформаторам возможна экономичная передача электрической энергии на большие расстояния.

    Самоиндукция.

    Электрический ток в отдельной катушке также создает магнитный поток, который пронизывает саму эту катушку. Если ток в катушке изменяется со временем, то будет изменяться и магнитный поток через катушку, наводя в ней ЭДС точно так же, как это происходит при работе трансформатора. Возникновение ЭДС в катушке при изменении тока в ней называется самоиндукцией. Самоиндукция влияет на ток в катушке аналогично тому, как влияет инерция на движение тел в механике: она замедляет установление постоянного тока в цепи при его включении и препятствует его мгновенному прекращению при выключении. Она также служит причиной возникновения искр, проскакивающих между контактами выключателей при размыкании цепи. В цепи переменного тока самоиндукция создает реактивное сопротивление, ограничивающее амплитуду тока.

    В отсутствие магнитных материалов вблизи неподвижной катушки магнитный поток, пронизывающий ее, пропорционален току в цепи. Согласно закону Фарадея (16), ЭДС самоиндукции должна в этом случае быть пропорциональна скорости изменения тока, т.е.

    где L – коэффициент пропорциональности, называемый самоиндукцией или индуктивностью цепи. Формулу (18) можно рассматривать как определение величины L . Если наводимая в катушке ЭДС выражается в вольтах, ток i – в амперах и время t – в секундах, то L будет измеряться в генри (Гн). Знак «минус» указывает на то, что наводимая ЭДС противодействует увеличению тока i , как и следует из закона Ленца. Внешняя ЭДС, преодолевающая ЭДС самоиндукции, должна иметь знак «плюс». Поэтому в цепях переменного тока падение напряжения на индуктивности равно L di /dt .

    ПЕРЕМЕННЫЕ ТОКИ

    Как уже говорилось, переменные токи – это токи, направление которых периодически изменяется. Число периодов циклического изменения тока в секунду называется частотой переменного тока и измеряется в герцах (Гц). Электроэнергия обычно подается потребителю в виде переменного тока с частотой 50 Гц (в России и в европейских странах) или 60 Гц (в США).

    Поскольку переменный ток изменяется во времени, простые способы решения задач, пригодные для цепей постоянного тока, здесь непосредственно неприменимы. При очень высоких частотах заряды могут совершать колебательное движение – перетекать из одних мест цепи в другие и обратно. При этом, в отличие от цепей постоянного тока, токи в последовательно соединенных проводниках могут оказаться неодинаковыми. Емкости, присутствующие в цепях переменного тока, усиливают этот эффект. Кроме того, при изменении тока сказываются эффекты самоиндукции, которые становятся существенными даже при низких частотах, если используются катушки с большой индуктивностью. При сравнительно низких частотах цепи переменного тока можно по-прежнему рассчитывать с помощью правил Кирхгофа, которые, однако, необходимо соответствующим образом модифицировать.

    Цепь, в которую входят разные резисторы, катушки индуктивности и конденсаторы, можно рассматривать, как если бы она состояла из обобщенных резистора, конденсатора и катушки индуктивности, соединенных последовательно. Рассмотрим свойства такой цепи, подключенной к генератору синусоидального переменного тока (рис. 8). Чтобы сформулировать правила, позволяющие рассчитывать цепи переменного тока, нужно найти соотношение между падением напряжения и током для каждого из компонентов такой цепи.

    Конденсатор играет совершенно разные роли в цепях переменного и постоянного токов. Если, например, к цепи на рис. 8 подключить электрохимический элемент, то конденсатор начнет заряжаться, пока напряжение на нем не станет равным ЭДС элемента. Затем зарядка прекратится и ток упадет до нуля. Если же цепь подключена к генератору переменного тока, то в один полупериод электроны будут вытекать из левой обкладки конденсатора и накапливаться на правой, а в другой – наоборот. Эти перемещающиеся электроны и представляют собой переменный ток, сила которого одинакова по обе стороны конденсатора. Пока частота переменного тока не очень велика, ток через резистор и катушку индуктивности также одинаков.

    Выше предполагалось, что переменный ток в цепи установился. В действительности же при подключении цепи к источнику переменного напряжения в ней возникают переходные процессы. Если сопротивление цепи не пренебрежимо мало, переходные токи выделяют свою энергию в виде тепла в резисторе и достаточно быстро затухают, после чего устанавливается стационарный режим переменного тока, что и предполагалось выше. Во многих случаях переходными процессами в цепях переменного тока можно пренебречь. Если же их необходимо учитывать, то нужно исследовать дифференциальное уравнение, описывающее зависимость тока от времени.

    Эффективные значения.

    Главная задача первых районных электростанций состояла в том, чтобы обеспечивать нужный накал нитей осветительных ламп. Поэтому встал вопрос об эффективности использования для этих цепей постоянного и переменного токов. Согласно формуле (7), для электрической энергии, преобразующейся в тепло в резисторе, тепловыделение пропорционально квадрату силы тока. В случае переменного тока тепловыделение непрерывно колеблется вместе с мгновенным значением квадрата силы тока. Если ток меняется по синусоидальному закону, то усредненное по времени значение квадрата мгновенного тока равно половине квадрата максимального тока, т.е.

    откуда видно, что вся мощность расходуется на нагревание резистора, тогда как в конденсаторе и индуктивности мощность не поглощается. Правда, реальные катушки индуктивности все же поглощают некоторую мощность, особенно если у них имеется железный сердечник. При непрерывном перемагничивании железный сердечник нагревается – частично наводимыми в железе токами, а частично за счет внутреннего трения (гистерезиса), которое препятствует перемагничиванию. Кроме того, индуктивность может наводить токи в расположенных поблизости схемах. При измерениях в цепях переменного тока все эти потери выглядят как потери мощности в сопротивлении. Поэтому сопротивление одной и той же цепи для переменного тока обычно несколько больше, чем для постоянного, и его определяют через потери мощности:

    Чтобы электростанция работала экономично, тепловые потери в линии электропередачи (ЛЭП) должны быть достаточно низкими. Если P c мощность, поставляемая потребителю, то P c = V c I как для постоянного, так и для переменного тока, поскольку при надлежащем расчете величину cos q можно сделать равной единице. Потери в ЛЭП составят P l = R l I 2 = R l P c 2 /V c 2 . Поскольку для ЛЭП требуются по крайней мере два проводника длиной l , ее сопротивление R l = r 2l /A . В этом случае потери в линии

    Если проводники выполнены из меди, удельное сопротивление r которой минимально, то в числителе не остается величин, которые можно было бы значительно уменьшить. Единственный практический путь снижения потерь – увеличивать V c 2 , поскольку применение проводников с большой площадью поперечного сечения A невыгодно. Это означает, что мощность следует передавать, используя как можно более высокое напряжение. Обычные электромашинные генераторы тока, приводимые в действие турбинами, не могут вырабатывать очень высокое напряжение, которого не выдерживает их изоляция. Кроме того, сверхвысокие напряжения опасны для обслуживающего персонала. Однако напряжение переменного тока, вырабатываемое электростанцией, можно для передачи по ЛЭП повысить с помощью трансформаторов. На другом конце ЛЭП у потребителя используются понижающие трансформаторы, которые дают на выходе более безопасное и практичное низкое напряжение. В настоящее время напряжение в ЛЭП достигает 750 000 В.

    Литература:

    Роджерс Э. Физика для любознательных , т. 3. М., 1971
    Орир Дж. Физика , т. 2. М., 1981
    Джанколи Д. Физика , т. 2. М., 1989

    

    Естественные и искусственные магниты

    Среди железных руд, добываемых для металлургической промышленности, встречается руда, называемая магнитным железняком. Эта руда обладает свойством притягивать к себе железные предметы.

    Кусок такой железной руды называется естественным магнитом , а проявляемое им свойство притяжения - магнетизмом .

    В наше время явление магнетизма используется чрезвычайно широко в различных электрических установках. Однако теперь применяют не естественные, а так называемые искусственные магниты .

    Искусственные магниты изготовляются из специальных сортов стали. Кусок такой стали особым образом намагничивают, после чего он приобретает, магнитные свойства, т. е. становится .

    Форма постоянных магнитов может быть самая разнообразная в зависимости от их назначения.

    У постоянного магнита силами притяжения обладают только его полюсы. Конец магнита, обращенный к северу, условились называть северным полюсом магнита , а конец, обращенный к югу, - южным полюсом магнита . Каждый постоянный магнит имеет два полюса: северный и южный. Северный полюс магнита обозначается буквой С или N, южный полюс - буквой Ю или S.

    Магнит притягивает к себе железо, сталь, чугун, никель, кобальт. Все эти тела называются магнитными телами. Все же остальные тела, которые не притягиваются к магниту, называются немагнитными телами.

    Строение магнита. Намагничивание

    Любое тело, в том числе и магнитное, состоит из мельчайших частиц - молекул. В отличие от молекул немагнитных тел, молекулы магнитного тела обладают магнитными свойствами, представляя собой молекулярные магнитики. Внутри магнитного тела эти молекулярные магнитики расположены своими осями в различных направлениях, в результате чего само тело никаких магнитных свойств не проявляет. Но если эти магнитики заставить повернуться вокруг своих осей так, чтобы они своими северными полюсами были обращены в одну сторону, а южными в другую, то тело приобретет магнитные свойства, т. е. станет магнитом.

    Процесс, в результате которого магнитное тело приобретает свойства магнита, называется намагничиванием . При изготовлении постоянных магнитов намагничивание производится при помощи электрического тока. Но можно намагнитить тело и другим способом, пользуясь обычным постоянным магнитом.

    Если прямолинейный магнит распилить по нейтральной линии, то получатся два самостоятельных магнита, причем полярность концов магнита сохранится, а на концах, полученных в результате распила, возникнут противоположные полюсы.

    Каждый из полученных магнитов можно также разделить на два магнита, и сколько бы мы ни продолжали такое деление, мы всегда будем получать самостоятельные магниты с двумя полюсами. Получить же брусок с одним магнитным полюсом невозможно. Этот пример подтверждает то положение, что магнитное тело состоит из множества молекулярных магнитиков.

    Магнитные тела отличаются одно от другого степенью подвижности молекулярных магнитиков. Есть тела, которые быстро намагничиваются и так же быстро размагничиваются. И, наоборот, есть тела, которые намагничиваются медленно, но зато долго сохраняют в себе магнитные свойства.

    Так железо быстро намагничивается под действием постороннего магнита, но так же быстро и размагничивается, т. е. теряет магнитные свойства при удалении магнита. Сталь же, намагнитившись раз, длительное время сохраняет в себе магнитные свойства, т. е. становится постоянным магнитом.

    Свойство железа быстро намагничиваться и размагничиваться объясняется тем, что молекулярные магнитики железа чрезвычайно подвижны, они легко поворачиваются под действием внешних магнитных сил, но зато так же быстро приходят в прежнее беспорядочное положение при удалении намагничивающего тела.

    Однако в железе небольшая часть магнитиков и после удаления постоянного магнита все же продолжает оставаться некоторое время в положении, которое они приняли при намагничивании. Следовательно, железо после намагничивания сохраняет в себе очень слабые магнитные свойства. Это подтверждается тем, что при удалении железной пластинки от полюса магнита не все опилки упали с ее конца - небольшая часть их осталась еще притянутой к пластинке.

    Свойство стали оставаться длительное время намагниченной объясняется тем, что молекулярные магнитики стали с трудом поворачиваются в нужном направлении при намагничивании, но зато сохраняют на продолжительное время установившееся положение и после удаления намагничивающего тела.

    Способность магнитного тела проявлять магнитные свойства после намагничивания называется остаточным магнетизмом.

    Явление остаточного магнетизма вызвано тем, что в магнитном теле действует так называемая задерживающая сила, которая удерживает молекулярные магнитики в положении, занятом ими при намагничивании.

    В железе действие задерживающей силы очень слабое, в результате чего оно быстро размагничивается и имеет очень маленький остаточный магнетизм.

    Свойство железа быстро намагничиваться и размагничиваться чрезвычайно широко используется в электротехнике. Достаточно сказать, что сердечники всех , применяемых в электрических аппаратах, изготовляются из специального железа, обладающего крайне малым остаточным магнетизмом.

    Сталь обладает большой задерживающей силой, благодаря чему в ней сохраняется свойство магнетизма. Поэтому изготовляются из специальных стальных сплавов.

    На свойствах постоянного магнита отрицательно сказываются удары, сотрясения и резкие колебания температуры. Если, например, постоянный магнит нагреть докрасна и затем дать остыть, то он совершенно потеряет свои магнитные свойства. Точно так же, если подвергать постоянный магнит ударам, то сила его притяжения заметно уменьшится.

    Объясняется это тем, что при сильном нагреве или ударах преодолевается действие задерживающей силы и тем самым нарушается упорядоченное расположение молекулярных магнитиков. Вот почему с постоянными магнитами и приборами, имеющими постоянные магниты, надо обращаться с осторожностью.

    Вокруг любого магнита существует так называемое .

    Магнитным полем называется пространство, в котором действуют магнитные силы . Магнитным полем постоянного магнита является та часть пространства, в котором действуют поля прямолинейного магнита магнитные силы этого магнита.

    Магнитные силы магнитного поля действуют в определенных направлениях . Направления действия магнитных сил условились называть магнитными силовыми линиями . Этим термином широко пользуются при изучении электротехники, однако надо помнить, что магнитные силовые линии не материальны: это - условное понятие, введенное только для облегчения понимания свойств магнитного поля.

    Форма магнитного поля , т. е, расположение в пространстве магнитных силовых линий, зависит от формы самого магнита.

    Магнитные силовые линии обладают рядом свойств: они всегда замкнуты, никогда не пересекаются, имеют стремление пойти по кратчайшему пути и оттолкнуться друг от друга, если направлены в одну сторону. Принято считать, что силовые линии выходят из северного полюса магнита и входят в его южный полюс; внутри магнита они имеют направление от южного полюса к северному.

    Одноименные магнитные полюсы отталкиваются, разноименные магнитные полюса притягиваются.

    В правильности обоих выводов нетрудно убедиться практически. Возьмите компас и поднесите к ней один из полюсов прямолинейного магнита, например северный. Вы увидите, что стрелка моментально повернется своим южным концом к северному полюсу магнита. Если быстро повернуть магнит на 180°, то сразу же повернется на 180° и магнитная стрелка, т. е. ее северный конец будет обращен к южному полюсу магнита.

    Магнитная индукция. Магнитный поток

    Сила воздействия (притяжения) постоянного магнита на магнитное тело убывает с увеличением расстояния между полюсом магнита и этим телом. Наибольшую силу притяжения магнит проявляет непосредственно у его полюсов, т. е. как раз там, где наиболее густо расположены магнитные силовые линии. По мере удаления от полюса густота силовых линий уменьшается, они располагаются все реже и реже, вместе с этим ослабевает и сила притяжения магнита.

    Таким образом, сила притяжения магнита в разных точках магнитного поля неодинакова и характеризуется густотой силовых линий. Для характеристики магнитного поля в различных его точках вводится величина, называемая магнитной индукцией поля .

    Магнитная индукция поля численно равна количеству силовых линий, проходящих через площадку 1 см2, расположенную перпендикулярно их направлению.

    Значит, чем больше густота силовых линий в данной точке поля, тем больше в этой точке магнитная индукция.

    Общее количество магнитных силовых линий, проходящих через какую-либо площадь, называется магнитным потоком.

    Магнитный поток обозначается буквой Ф и связан с магнитной индукцией следующим соотношением:

    Ф = BS,

    где Ф - магнитный поток, В - магнитная индукция поля; S - площадь, пронизываемая данным магнитным потоком.

    Эта формула справедлива только при условии, если площадь S расположена перпендикулярно направлению магнитного потока. В противном случае величина магнитного потока будет зависеть еще и от того, под каким углом расположена площадь S, и тогда формула примет более сложный вид.

    Магнитный поток постоянного магнита определяется полным числом силовых линий, проходящих через поперечное сечение магнита. Чем больше магнитный поток постоянного магнита, тем большей силой притяжения этот магнит обладает.

    Магнитный поток постоянного магнита зависит от качества стали, из которой магнит изготовлен, от размеров самого магнита и от степени его намагничивания.

    Магнитная проницаемость

    Свойство тела пропускать через себя магнитный поток называется магнитной проницаемостью . Магнитному потоку легче пройти через воздух, чем через немагнитное тело.

    Чтобы иметь возможность сравнивать различные вещества по их , принято считать магнитную проницаемость воздуха равной единице.

    Вещества, у которых магнитная проницаемость меньше единицы, называются диамагнитными . К ним относятся медь, свинец, серебро и др.

    Алюминий, платина, олово и др. обладают магнитной проницаемостью немного больше единицы и носят название парамагнитных веществ.

    Вещества, магнитная проницаемость которых значительно больше единицы (измеряется тысячами), называются ферромагнитными. К ним относятся никель, кобальт, сталь, железо и др. Из этих веществ и их сплавов делают всевозможные магнитные и электромагнитные приборы и детали различных электрических машин.

    Практический интерес для техники связи представляют специальные сплавы железа с никелем, получившие название пермаллоев .

    Инженерные сети